femu
Forschungsbericht
2001

Forschungszentrum für Elektro-Magnetische Umweltverträglichkeit (femu)

Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule Aachen (RWTH)
femu

FORSCHUNGSBERICHT

2001

Forschungszentrum für Elektro-Magnetische Umweltverträglichkeit (femu)
Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule
Aachen

Aachen, Dezember 2001
Inhaltsverzeichnis

1 Jahresüberblick .. 5

2 Forschungsprojekte ... 9

2.1 In vitro Einfluss elektrischer Feldstärken auf die anti- und prothrombotische Aktivität von humanen Nabelschnurendothelzellen ... 9

2.2 Elektromagnetische Wechselwirkungen im Knorpelgewebe 15

2.3 Einfluss eines 50 Hz-Magnetfeldes auf das DNA-Reparaturvermögen verschiedener Zellarten in Gehirn, Leber und Niere ... 19

2.4 Magnetische Stimulation in peripheren Nerven und Muskeln ... 23

2.5 Wirkungen niederfrequenter elektrischer Felder auf den visuellen Kanal: Elektrophosphene ... 26

2.6 Wahrnehmung elektrischer Ströme durch die Sinnesrezeptoren der Haut ... 31

2.7 Herzschrittmacher in niederfrequenten magnetischen Feldern des Alltags ... 37

2.8 Störung medizinischer Implantate durch mehrere unabhängige hochfrequente Felder ... 44

2.9 Ausbau und Pflege der Wissensbasierten Literaturdatenbank (WBLDB) ... 47

2.10 Erarbeitung und Implementierung eines neuen Zweiges der WBLDB für „Epidemiologische Studien“ .. 55

2.11 Informationsportal über die Wirkungen elektromagnetischer Felder auf den Menschen — basierend auf der WBLDB 63
2.12 Elektrische Messungen des Nahrungstransportes im Gastrointestinaltrakt (GIT) 71
2.12.1 Impedanzverfahren zur hochauflösenden Erfassung der Motilität im GIT 71
2.12.2 Anwendung des Impedanzverfahrens in der Pädiatrie 75
2.12.3 Motilität bei Erwachsenen 77
2.12.4 Prä- und postoperative sowie intensivmedizinische Aspekte 78

3 Präsentationen .. 79
3.1 Erschienene Publikationen 79
3.2 Eingereichte / akzeptierte Publikationen 80
3.3 Konferenz-Beiträge 81
3.4 Vorträge 82
3.5 Sonstige Aktivitäten 84

4 Anhang .. 86
4.1 Mitarbeiter des femu 86
4.2 Impressum 88
Kapitel 1

Jahresüberblick

Die Arbeiten des Forschungszentrums für Elektro-Magnetische Umweltverträglichkeit (femu) wurden im Jahr 2001 fortgesetzt mit

- Grundlagenuntersuchungen zu elektromagnetischen Wechselwirkungen im Gewebe und im Organismus

- Ermittlung von Effekten elektromagnetischer Felder des Alltags bei Probanden, Patienten und Implantatträgern

- Abschätzung von Risiken gesundheitsrelevanter Wirkungen von elektromagnetischen Feldern, die in Zukunft eingeführt werden sollen

- Erhebung und Übermittlung des aktuellen Wissensstandes auf dem Gebiet der elektromagnetischen Interaktion mit lebender Materie

Eine enge Zusammenarbeit mit Partnern, insbesondere aus dem Universitätsklinikum und Instituten der RWTH Aachen, stellt eine unabdingbare Voraussetzung für die erfolgreiche Durchführung der Projekte dar.

Da die Bearbeitung der Projekte weitgehend mit Drittmitteln finanziert wurde, waren Umfang und Intensität der Arbeiten durch diesen Faktor maßgeblich vorgegeben.

Nach der Auflösung der Forschungsgesellschaft für Biomedizinische Technik e.V. zum 30.06.2001 wurden die einzelnen Arbeitsbereiche in das Universitätsklinikum der RWTH Aachen eingegliedert. Das femu hat nicht nur eine
organisatorische Verankerung, sondern auch eine Möglichkeit synergetischer Ergänzungen im Institut für Hygiene und Umweltmedizin (Direktor: Prof. Dr. W. Dott) gefunden.

Die Umstrukturierung der Forschungsbereiche gab Anlass, die verwandte Problematik der Umsetzung von elektromagnetischen Interaktionen in der medizinischen Messtechnik, die im früheren Helmholtz-Institut bearbeitet wurde, im *femu* fortzuführen.

Insbesondere sind das

- elektrische Messungen der Motilität im Gastrointestinaltrakt (Abschnitt 2.12)

- Aufnahme elektrischer Biosignale in stark elektromagnetisch stark gestörter Umgebung wie z.B. im Kernspintomographen und

- Entwicklung und Optimierung von Verfahren zu lokalen wie auch großräumigen elektrischen und magnetischen Stimulation von Nerven, Muskeln oder Sinnesrezeptoren.

Die durchgeführten Untersuchungen der Beeinflussung von Endothelzellen durch starke elektrische Felder (Abschnitt 2.1), der Knorpelzellen in magnetischen Wechselfeldern (Abschnitt 2.2) sowie die Tierexperimente zur Einwirkung magnetischer 50 Hz-Felder auf die DNA-Reparaturmechanismen (Abschnitt 2.3) dienen der Überprüfung grundlegender Hypothesen. Die vorgestellten initialen Untersuchungen zeigen die Komplexität der jeweiligen Problematik und die notwendige Ausrichtung der weiteren Experimente.

Die Untersuchungen zur Störbeeinflussung elektronischer Implantate (Abschnitt 2.7) haben sich auf die Abschätzung der Störschwelle unipolarer und bipolarer Herzschrittmacher in magnetischen Wechselfeldern, wie sie im Alltag z.B. unter Hochspannungsfreileitungen oder im Bereich der Identifikationssysteme vorkommen, konzentriert. Die Resultate zeigen, dass auch für neue Herzschrittmacher die Gefahr einer Störung durch die elektromagnetischen Felder verschiedener Geräte und Einrichtungen im Alltag und Beruf nicht ausgeräumt ist.

Im hochfrequenten Frequenzbereich stellt sich die Frage, welche Beiträge mehrere gleichzeitig betriebene unabhängige hochfrequente Quellen (z.B. Handys) zu Störschwellen eines elektronischen Implantates liefern. Die in Abschnitt 2.8 verkürzt präsentierten Untersuchungen zeigen, dass sich die Beiträge mehrerer unabhängiger Quellen nicht direkt, sondern nur mit dem quadratischen Mittelwert addieren.

Unter dem umgangssprachlichen Begriff „Elektrosmog“ werden unterschiedliche Erkrankungen in Zusammenhang mit der Exposition der Bevölkerung durch elektromagnetische Felder des Alltags in Verbindung gebracht. In der

Um den Zugang zu den Experteninformationen der WBLDB auch für Nichtfachleute zu ermöglichen, wurde mit Förderung durch das Bundesamt für Strahlenschutz (BfS) mit der Entwicklung eines Informationsportals („Laienportals“) begonnen. Das Vorgehen ist in Abschnitt 2.11 erläutert.

Aachen, im Dezember 2001

Prof. Dr. J. Silny
Kapitel 2

Forschungsprojekte

2.1 In vitro Einfluss elektrischer Feldstärken auf die anti- und prothrombotische Aktivität von humanen Nabelschnur-Endothelzellen

D. Ulrich, B. Hafemann, N. Pallhua1; J. Silny

Einleitung

1Klinik für Plastische Chirurgie, Hand- und Verbrennungschirurgie des Universitätsklinikums der RWTH Aachen

Um Aussagen über eine mögliche Veränderung des hämostaseologischen Gleichgewichtes aufgrund einer Stromschädigung von Endothelzellen treffen zu können, sollten der Plasminogenaktivator-Inhibitor 1 (PAI-1) und der tissue-type Plasminogenaktivator (t-PA) als Parameter des Fibrinolysesystems und der von Willebrand-Faktor (vWF), das Protein C sowie der Faktor V als Parameter der Blutgerinnung im Zellkulturüberstand von humanen Nabelschnur-Endothelzellen (HUVEC) mittels ELISA-Technik bestimmt werden.

Material und Methoden

Zur Versuchsdurchführung erfolgten die Entwicklung, der Bau und die Überprüfung einer Versuchsvorrichtung (Abbildung 2.1), in der konfluierend wachsende HUVEC definiert und einheitlich homogenen sinusförmigen elektrischen 50-Hz-Feldern mit unterschiedlicher Dauer ausgesetzt werden können. Appliziert werden können einzelne Halbperioden oder Perioden wie auch das Vielfache einer
Abbildung 2.1: Kulturschale mit Endothelzellen, Kulturlösung und den Elektroden für die Applikation elektrischer Felder

Um eine athermische Wirkung der elektrischen Felder während der Versuchs durchführung zu gewährleisten, erfolgten in Vorversuchen zunächst die Messung der elektrischen und dielektrischen Eigenschaften verschiedener Pufferlösungen sowie der Temperaturentwicklung in Abhängigkeit vom applizierten Feld und der Einwirkdauer.

Für die Versuche erfolgte zunächst eine Kultivierung der HUVEC. Pro Versuchsreihe wurden die Zellen auf insgesamt sieben Kulturschalen ausgesät. Eine Schale diente jeweils als Kontrolle und sie wurde keinem elektrischen Feld ausgesetzt. In drei Schalen wurden elektrische Feldstärken von 36 V/cm appliziert und in drei Feldstärken von 60 V/cm aufgebaut. Die Anzahl der injizierten 50 Hz-Stromperioden pro Expositions paket betrug dabei 1, 10 und 30 (Tabelle
Tabelle 2.1: Versuchsgruppen \((n = 7)\) zur Durchführung der Stromexperimente

<table>
<thead>
<tr>
<th>Kulturschale</th>
<th>Feldstärke V/cm</th>
<th>Periodenanzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Kontrolle)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>30</td>
</tr>
</tbody>
</table>

Ergebnisse

In der Versuchsgruppe mit einer Feldstärkenapplikation von 36 V/cm zeigten sich bei unterschiedlicher Anzahl von 50 Hz-Perioden innerhalb der ersten 2 Stunden keine wesentlichen t-PA-Konzentrationsunterschiede im Zellkulturüberstand (Abbildung 2.2). Nach 4 Stunden liegt die t-PA-Konzentration im Medium der Kontrollgruppe deutlich niedriger insbesondere gegenüber den Gruppen, die mit 10 und 30 Feldperioden behandelt wurden. Nach 24 Stunden trat in allen befeldeten Gruppen ein hochsignifikanter Anstieg der t-PA-Konzentration gegenüber der Kontrolle auf.

Abbildung 2.2: t-PA-Konzentration im 220 V-Versuch bei einer Periodenzahl von 1 (Schale 2), 10 (Schale 3) und 30 (Schale 4)

Die PAI-1-Konzentration stieg im Zellkulturüberstand aller untersuchten Gruppen während des Untersuchungszeitraumes von 24 Stunden signifikant an, während Faktor V, Protein C und vWF im Zellkulturüberstand keine Konzentrationsunterschiede nach Stromzufuhr aufwiesen.

Während der Feldstärkeapplikation wurden lediglich maximale Temperaturveränderungen von 8°C im Zellkulturüberstand der bei einer Raumtemperatur von 22°C dem Stromfluss unterliegenden HUVEC festgestellt (30 Perioden bei einer Feldstärke von 60 V/cm).

Ein nach 24 Stunden, 4 und 6 Tagen durchgeführter MTT-Test zeigte keine Aktivitätsänderungen der mitochondrialen Dehydrogenasen bei den Stromdurchfluss ausgesetzten Endothelzellen.

Schlussfolgerungen

Im Zellkulturüberstand von HUVEC, die mit 10 und 30 Perioden eines elektrischen Feldes bei der Applikation von elektrischen Feldstärken von 36 V/cm und 60 V/cm behandelt wurden, liegt nach 4 Stunden gegenüber der Kontroll-
2.2 Elektromagnetische Wechselwirkungen im Knorpelgewebe

B. Schmidt-Rohlfing, F. U. Niethard; J. Silny

Problematik

Elektromagnetische Felder werden zunehmend häufig in der Therapie von degenerativen Gelenkserkrankungen eingesetzt, ohne dass bislang ein sicherer Nachweis der Wirksamkeit erbracht worden wäre. Angesichts dieser unzureichenden Wissensbasis erscheint eine Überprüfung aller hypothetischen Ansätze angezeigt, insbesondere die der mechanoelektrischen Eigenschaften von Knorpelgewebe der durch externe Magnetfelder induzierten elektrischen Potenziale und der elektromagnetischen Wechselwirkung im Knorpelgewebe.

Mechanoelektrische Eigenschaften von Knorpelgewebe

Im menschlichen Organismus kommt es im Knochen- und Knorpelgewebe unter mechanischer Belastung zu einer elektrischen Potenzialänderung gegenüber dem umgebenden Gewebe, ohne dass bislang die physiologische Bedeutung belegt ist. Versuche zum Nachweis solcher Phänomene wurden in der Vergangenheit an ausgestanzten Knorpelzylindern durchgeführt, wo aufgrund der Polarisationsspannung unterschiedliche Artefakte an Grenzflächen zwischen Elektroden und ionalen Leitern des Körpers auftreten können.

Mit der neuen Versuchsanordnung erfolgten zunächst an insgesamt 8 porcinen Kniegelenken axiale Kompressionsversuche. Hierzu wurden die Gelenke zwischen dem Boden und der Kraftplatte der Versuchsvorrichtung auf die Län-

1 Orthopädische Klinik des Universitätsklinikums der RWTH Aachen
Abbildung 2.4: Versuchsanordnung zur Messung elektrischer Potenziale im Knorpelgewebe unter axialer Belastung. Die schwarzen Kreise symbolisieren Nadelelektroden, die tangential ins Knorpelgewebe eingebracht wurden, während die hellen Kreise externe Elektroden darstellen, die auf dem Gewebe (zwischen einem internen Elektrodenpaar) fixiert wurden.

ge von 12 cm angepasst. Der Druckaufnehmer befand sich unmittelbar oberhalb der Kraftplatte (vgl. Abb. 2.4). Die Kraft wurde durch einen (kraftgesteuerten) Elektromotor aufgebaut. Nach Positionierung der vergoldeten Nadelelektroden für die differenzielle Ableitung im Gelenkknorpel und einer Re
cerzelektrode in dem mit physiologischer Kochsalzlösung gefüllten Versuchsbehälter erfolgte die Belastung. Während der Belastungsphase wurden die verstärkten Signale computergestützt aufgezeichnet. Die porkinen Kniegelenke wurden Kompressionskräften bis zu 800 N ausgesetzt.

Die Experimente zeigten, dass jede maximale Kraftapplikation mit einer maximalen Elektronegativität der vom Gelenkknorpel abgeleiteten Potenziale korreliert. Dabei konnten elektrische Potenzialänderungen bis zu 17 mV abgeleitet werden. Grundsätzlich fand sich eine weitgehend lineare Korrelation zwischen den Potenzialänderungen und den applizierten Kräften (im gemes-
sen Bereich). Frequenzänderungen zwischen 0.036 und 1.4 Hz hatten keine Änderung hinsichtlich der Amplituden der elektrischen Potenziale zur Folge. In diesem Frequenzbereich kam es auch zu keiner messbaren Verzögerung der Potenzialantworten.

Weiterhin zeigten die kontinuierlichen Aufzeichnungen der elektrischen Potenziale im Knorpelgewebe ohne applizierte Belastung spontane Veränderungen. Dies legte bereits den Verdacht nahe, dass hierbei auch Potenziale mitgemessen wurden, die nicht durch die Applikation von Kräften entstanden waren.

Magnetisch induzierte und belastungsinduzierte Potenziale im Knorpelgewebe

Weitere Versuche galten der Untersuchung der im Kniegelenk durch Magnetfelder induzierten elektrischen Felder.

In einem Kniegelenkmodell erfolgte die Überprüfung der elektrischen Feldstärken, die durch Magnetfelder (2 und 4.9 mT, 50 Hz) induziert wurden. Hierzu wurde ein Kunststoff-Knie (Sawbones) zentral in einem elektrischen Volumenleiter (Plexiglasröhrte, mit physiologischer Kochsalzlösung gefüllt) positioniert. An fünf verschiedenen Positionen des distalen Femur-Endes wurden gesinter- te Kugelelektroden im Abstand von je 1 cm angebracht, die eine Messung der Feldstärken in den 3 Raumkoordinaten ermöglichten (vgl. Abb. 2.5).

Es wurden induzierte elektrische Feldstärken zwischen 60 und 410 μV/cm im Kniegelenk abgeleitet. Die Höhe der gemessenen Werte war unmittelbar abhängig von der Ausrichtung der Elektroden in Relation zu der räumlichen Ausrichtung der Spule. Die Feldstärken am Rande des Volumenleiters waren mit 1400 μV/cm deutlich höher. Ein Vergleich mit den Potenzialen, die unter
Abbildung 2.5: Schematische Darstellung der Positionierung der Elektroden mit unterschiedlicher Lokalisation im Kniegelenk.

physiologischer Belastung auftraten, zeigte, dass letztere etwa 30 mal höher lagen als die Potenziale, die durch die Magnetfelder induziert wurden. Dieses Ergebnis macht die postulierte Therapiewirkung derartiger Magnetfelder eher unwahrscheinlich.

Experiment in vitro

2.3 Einfluss eines 50 Hz-Magnetfeldes auf das DNA-Reparaturvermögen verschiedener Zellarten in Gehirn, Leber und Niere

Ch. Schmitz, H. Korr1; S. Merkelbach, Ch. Jakob, Ch. Mittermayer2; R. Kluge3; J. Silny

Stand der Forschung

Die im normalen Stoffwechselgeschehen einer Zelle natürlich anfallenden nukleären (n)DNA-Schäden werden meist unmittelbar nach ihrer Entstehung repariert. Falls es zu Störungen dieser Reparaturvorgänge kommt (z.B. durch eine Magnetfeld (MF)-Exposition), ist mit Veränderungen in der DNA-

1Lehr- u. Forschungsgebiet Anatomie und Zellbiologie, Universitätsklinikum der RWTH Aachen
2Institut für Pathologie des Universitätsklinikums der RWTH Aachen
3Institut für Versuchstierkunde des Universitätsklinikums der RWTH Aachen
Mikrosatellitensequenz zu rechnen, die sich molekulargenetisch nachweisen lassen.

In der vorliegenden Pilotstudie an adulten Mäusen wurde mit autoradiografischen und auch molekulargenetischen Methoden die Problematik von DNA-Schäden nach einer MF-Exposition nicht nur im Gehirn, sondern auch in den wichtigen Stoffwechselorganen Leber und Niere eingehend analysiert.

Material und Methoden

1. D1 Mit4, D2 Mit16, D5 Mit10, D6 Mit8, D10 Mit2 nach Reitmair et al., 1996 (Cancer Res. 56:3842–3849)

2. D4 Mit39, D11 Mit14 nach Aldaz et al., 1996 (Mol. Carcinogenesis 17:126–133)

3. D8 Mit45, D12 Mit136 nach Fox et al., 1997 (Toxicol Appl Pharmacol 143:167-172)

4. D7 Mit17 nach De Wind et al., 1995 (Cell 82:321-330)
Ergebnisse

DNA-Reparatur

Im Zellkern von Neuronen in der Cortexschicht V (Pyramidenzellen), im Hippocampus (Pyramidenzellen der Areale CA1-2 sowie — gesondert — CA3; Granularzellen des Gyrus dentatus hippocampi) sowie im Cerebellum (Purkinje-Zellen; Granularzellen) fanden sich keine signifikanten Unterschiede zwischen MF-exponierten und Kontroll-Mäusen. Dasselbe negative Ergebnis gilt auch für Gliazellen im Cortex. Dagegen war die nDNA-Reparatur statistisch signifikant erhöht ($p < 0.05$) bei Epithelzellen des Plexus choroideus, möglicherweise auch in den Epithelzellen des proximalen Tubulus der Niere (Untersuchungen noch im Gange).

MtDNA-Synthese

Bei keiner der bisher untersuchten Zelltypen in Gehirn und Niere fanden sich nach MF-Exposition signifikant veränderte Werte im Vergleich zu den Kontrolltieren.

Zellkernvolumen

Das Zellkernvolumen (repräsentiert durch die gemessenen Projektionsflächen der Zellkernanschnitte) war nach MF-Exposition im Falle der hippocampalen Granularzellen signifikant erniedrigt. Insgesamt fand sich mit Ausnahme der kortikalen Glia- und cerebellären Granularzellen eine auffallende Parallelität (d.h. gleichsinnige Zu- oder Abnahme) zwischen DNA-Reparatur und Zellkernvolumen.

Mikrosatellitensequenz

Bei keinem der untersuchten Marker fand sich ein Unterschied in den Mikrosatellitensequenzen zwischen MF-exponierten und Kontrolltieren.

Diskussion

Die für Epithelzellen des Plexus choroideus und möglicherweise auch in der Niere gefundene Erhöhung der nDNA-Reparatur nach MF-Exposition bedeutet, dass
2.4 Magnetische Stimulation in peripheren Nerven und Muskeln

K.-G. Aspacher; R. F. Töpper1; J. Silny

Fragstellung

Neuronen, Sinnesrezeptoren, Nerven und Muskeln können bekanntlich durch die im Gewebe magnetisch induzierten elektrischen Wirbelfelder überschwellig stimuliert werden. Die Reizschwelle hängt maßgeblich von der Anatomie und Morphologie des magnetisch durchsetzten Körpereiches wie auch von der räumlichen Ausdehnung sowie der Frequenz bzw. der zeitlichen Form des Magnetfeldes ab.

Hier wird alternativ eine numerische Lösung des Problems mit der Methode der Finiten Elemente vorgestellt, die mit einer hohen Flexibilität in Bezug auf die Modellierung der Geometrie des Magnetfeldes in beliebiger Lage zum Körper sowie in Bezug auf die zeitliche Form des Magnetfeldes besticht. Das Simulationsverfahren wird für einen speziellen Fall der magnetischen Stimulation von peripheren Nerven und Muskeln der oberen Extremitäten experimentell überprüft.

1Neurologische Klinik des Universitätsklinikums der RWTH Aachen
Abbildung 2.6: Modelle des Oberarms und der Reizspule

Methode

Dem Modell des Oberarms liegen anatomische Strukturen aus dem „VISIBLE HUMAN PROJECT“ zu Grunde. In diesem Computer-Modell sind Subcutis, Muskeln, Nerven, Blutgefäße, kortikale Knochen und Knochenmark berücksichtigt (Abb. 2.6).

Die elektrischen und dielektrischen Eigenschaften der Gewebe für den niedrigfrequenten Bereich wurden eigenen Messungen bzw. der Literatur entnommen (Tab. 2.2).

Auf dieser Grundlage wurden Modelle vom Oberarm mit unterschiedlicher Komplexität von einem einfachen homogenen Volumenleiter bis zur Berück-
Tabelle 2.2: Elektrische und dielektrische Eigenschaften von Gewebe

<table>
<thead>
<tr>
<th>Gewebeart</th>
<th>Leitfähigkeit (S/m)</th>
<th>Relative Dielektrizitätskonstante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blut</td>
<td>0.7000</td>
<td>5256</td>
</tr>
<tr>
<td>Kortikale Knochen</td>
<td>0.0203</td>
<td>1481</td>
</tr>
<tr>
<td>Knochenmark</td>
<td>0.0024</td>
<td>2444</td>
</tr>
<tr>
<td>Fett</td>
<td>0.0232</td>
<td>8024</td>
</tr>
<tr>
<td>Muskeln</td>
<td>0.3312</td>
<td>131330</td>
</tr>
<tr>
<td>Nerven</td>
<td>0.0304</td>
<td>60417</td>
</tr>
</tbody>
</table>

sichtung aller Gewebearten mit ihren elektrischen Inhomogenitäten und Anisotropien aufgebaut und berechnet. Als magnetischer Reiz wurde in der Simulation ein Impuls des herkömmlichen Magnetstimulators Magstim® (Modell 9784) herangezogen, der in der Neurologie Anwendung findet. Bei diesem System entlädt sich ein auf max. 2800 V geladener 185 μF-Kondensator über eine 24μ H-Reizspule. Der Spitzenstrom erreicht 44.8 kA, was zu einer magnetischen Spitzenflussdichte von 2.5 T führt. Da die Simulation im Frequenzbereich erfolgt, wird der Magnetimpuls in harmonische sinussförmige Komponenten zerlegt, die einzeln berechnet und danach wieder zusammengesetzt werden. Damit können beliebige Zeitformen des Magnetfeldes untersucht werden.

Resultate und experimentelle Überprüfung

Für die Positionierung der Reizspule flach auf der Haut des Oberarmes oberhalb des N. ulnaris und N. medianus resultieren Maxima der induzierten elektrischen Feldstärke von 93 V/m, der Stromdichte von 74 A/m² und der Gradienten von 243 V/m² in der Region der V. brachialis. In der Region des N. ulnaris ergibt sich dabei eine Feldstärke von 62.6 V/m und ein Gradient von 42 V/m². Experimentelle Untersuchungen ergeben, dass bereits 20% dieser Maximalwerte ausreichen, um eine überschwellige Stimulation im N. ulnaris einzuleiten. Die numerische Simulation zeigt mit höher werdender Komplexität der be-rücksichtigten Anatomie eine gute Annäherung (Abweichung unter 10%) an die experimentell ermittelten Verteilungen der Feldstärken und Gradienten.

Die numerische Simulation der im Körper magnetisch induzierten elektrischen Felder liefert verlässliche Ergebnisse, wenn die hohe Komplexität des elektrischen Volumenleiters im Körper weitgehend berücksichtigt wird.
2.5 Wirkungen niederfrequenter elektrischer Felder auf den visuellen Kanal: Elektrophosphene

G. Lindenblatt, J. Silny

Motivation

Niederfrequente elektromagnetische Felder können neben Muskeln und Nerven auch die Sinnesrezeptoren des menschlichen Körpers inadäquat erregen und damit eine ungewollte oder sogar störende Wahrnehmung auslösen. Diese Erregung der Sinnesrezeptoren soll mit wesentlich geringerem Stromdichten erfolgen, als beispielsweise bei Muskeln.

Elektro- und Magnetophosphene, Lichterscheinungen durch eine inadäquate Reizung des visuellen Kanals mittels elektrischer bzw. magnetischer Felder, sollen dabei Stromdichteschwellen von etwa 1 μA/cm² am Orte der Erregungsauslösung, der Retina, aufweisen: Abbildung 2.7. Dieser grob geschätzte, sehr niedrige Wert wird als Basis für allgemeine Betrachtungen der elektrischen Sicherheit herangezogen und muss deshalb genau überprüft werden.

Abbildung 2.7: Stromdichten zur Auslösung verschiedene Effekte
Die Modellierung des Auges als inhomogener elektrischer Volumenleiter wurde bereits im letzten Jahresbericht beschrieben. Hier stehen die überprüfenden Untersuchungen mit Probanden im Vordergrund.

Nach in-vitro-Messungen der elektrischen und dielektrischen Eigenschaften aller Augengewebe und -flüssigkeiten und der nummerischen Modellierung des Auges wurde eine Stromdichteverhöhung in den Bereichen der Durchgänge der Blutgefäße in den Augapfel gefunden, die zwei Größenordnungen über den bisher allgemein angenommenen Werten liegt: für 60 Hz ergab sich eine phosphenauslösende Stromdichte von 1.95 A/m² statt bisher in der Literatur angegebenen 0.01 A/m². Dieses rechnerische Ergebnis galt es im Probandenversuch zu belegen. Eine direkte Messung der Stromdichte am Erregungsort ist jedoch nicht praktikabel, die Ergebnisse der Modellierung werden indirekt bei Probanden über die Abhängigkeit der Reizschwelle von dem Strompfad überprüft.

Probandenuntersuchungen

Die Variablen, von denen die Wahrnehmbarkeit eines Elektrophosphens abhängt, können in drei Gruppen aufgeteilt werden:

- **technische Variablen**
 - Stärke und Frequenz des injizierten Stromes
 - Ort der Injektion
 - Pfad der Durchströmung im Körper

- **Umweltvariablen**
 - Hintergrundhelligkeit
 - Betrachtungsgegenstand bzw. -muster
 - Adaptationsgrad des Auges

- **mentale Variablen**
 - Konzentration
 - Voreingenommenheit
 - Entscheidungstendenz

Diese Variablen wurden bei den in der Literatur gegebenen, meist phäno-
Lage des Foramen infraorbitale

Abbildung 2.8: Zur Lage der Elektroden beim Probandenexperiment. Für die Lage der aktiven Elektrode auf dem Foramen infraorbitale ergeben sich niedrigere Stromschwellen. Dies ist ein indirekter Nachweis für die Stromdichteüberhöhung aufgrund der hohen Leitfähigkeit der Blutgefäße.

menologisch ausgerichteten Arbeiten jedoch nicht ausreichend berücksichtigt. Eigene Versuche mit Probanden wurden daher durchgeführt.

Ergebnisse und Interpretation

Elektrophosphene lassen sich durch Ströme zwischen 15 μA und 200 μA in einem Frequenzbereich zwischen 5 Hz und 100 Hz auslösen, indem ein Strom über Elektroden in der Nähe des Auges oder über Elektroden, die direkt auf dem Augapfel aufsitzen (z.B. Cornea-Kontakt-Elektroden), eingeprägt wird.

Die hier bei 20 Hz, dem in vorhergehenden Versuchen gefundenen Empfindlichkeitsmaximum für Phosphene, durchgeführten Versuche ergaben eine Erniedrigung der Stromschwelle beim Aufbringen der differenten Elektrode auf das Foramen infraorbitale, vgl. Tabelle 2.3.

Tabelle 2.3: Beispiele für die Änderung der Stromschwelle in Abhängigkeit von Strompfad

<table>
<thead>
<tr>
<th>Messung</th>
<th>Erregungsschwelle $I_{0.5}$</th>
<th>rel. Änderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foramen infr.</td>
<td>Os zyg.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>44 μA</td>
<td>51 μA</td>
</tr>
<tr>
<td>2</td>
<td>37 μA</td>
<td>43 μA</td>
</tr>
<tr>
<td>3</td>
<td>40 μA</td>
<td>49 μA</td>
</tr>
</tbody>
</table>

Hauptschwierigkeit bei dieser Versuchsreihe war, dass die Schwellen der Phosphene z.B. infolge Konzentrationsänderung schwanken (s.o., mentale Faktoren). Die Untersuchungen wurden daher mit einer eigens entwickelten Intervallmaximierungsmethode, die sich an die Konstantreizmethode anlehnt, diese jedoch in den Testzeiten unterbietet, durchgeführt. Diese Methode liefert neben dem Schwellenwert (Wert mit 50%iger Wahrnehmungswahrscheinlichkeit) den gesamten Schwellenverlauf zwischen 0% und 100% Wahrnehmungswahrscheinlichkeit sowie eine statistische Aussage über die Zuverlässigkeit der gefundenen
Schwelle. Die statistische Unsicherheit lag bei 3\% (für LogEC50 gemäß Dose-
Response-Modell), also unter den oben gefundenen Abweichungen für unter-
schiedliche Strompfade; die Steigung (Schwellenverlauf) änderte sich hingegen
nicht.
2.6 Wahrnehmung elektrischer Ströme durch die Sinnesrezeptoren der Haut

G. Lindenblatt, J. Silny

Motivation

Für den Praktiker relevant, werden anhand der inadäquaten Erregbarkeit der Haut-Sinnesrezeptoren u.a. maximal zulässige Berührungsspannungen bzw. Entladungsströme definiert, durch die z.B. von einem elektrisch betriebenen Gerät Ströme auf einen Benutzer übergehen können. Diese unmittelbar einsichtige und auch leicht zu bestimmende Größe ist jedoch nur bedingt sinnvoll, denn sie beschreibt nicht das tatsächliche Feld innerhalb des Körpers am Sinnesrezeptor, welches zur Erregung und damit zur Wahrnehmung führt.

Die physiologisch relevante Größe der gewebeinternen, am Receptor wirkenden Stromdichte ist messtechnisch nicht direkt zugänglich. Es bietet sich daher ein Vorgehen in zwei Schritten an:

1. experimentelle Bestimmung einer „externen“ Stromschwelle

2. daraus Bestimmung der „internen“ Stromdichteschwelle im Modell

An dieser Stelle soll auf den ersten Schritt eingegangen werden.

Es gibt eine Anzahl an Untersuchungen zum Themenkreis Elektrocutan- sensationen, jedoch werden nicht alle Abhängigkeiten berücksichtigt oder klar definiert. Insbesondere wurde die Adaptation auf den inadäquaten Reiz außer Acht gelassen.
Probandenuntersuchungen

In den Probandenuntersuchungen soll die Abhängigkeit der Schwelle von

1. Stromstärke und -form,
2. Frequenz,
3. Einwirkdauer,
4. Temperatur,
5. Hautfeuchtigkeit,
6. Elektrodenfläche und -lage sowie
7. durchströmtes Hautareal

berücksichtigt werden.

Die Probandenuntersuchungen zur Ermittlung der Stromschwelle für die Erregung einer Elektrocutansensation gliedern sich in zwei Bereiche, zum einen die Bestimmung des Einflusses der gefundenen Adaptation (vgl. femu-Forschungsbericht 2000) auf einen elektrischen Reiz auf die (aktuelle, zeitabhängige) Schwelle, zum anderen auf eine definierte Wahrnehmungsgrenze, die auch bei optimalen Bedingungen nicht unterschritten werden kann.

Bestimmung der Adaptation

Eine Adaptation auf die inadäquate Erregung ist unerwünscht, denn sie erhöht die Wahrnehmungsschwelle. Gesucht ist jedoch die niedrigere Ruheschwelle.

Bei einer Stromform wie in Abbildung 2.9 wird — dem wahrnehmungspsychologischen Sprachgebrauch folgend — jede Amplitude > 0 als „Signal“ bezeichnet. Die Frage ist, ob unter den gewählten Versuchsbedingungen ein Signal der Stärke I_T (und beliebiger zeitlicher Ausdehnung) durch den Probanden wahrgenommen werden kann oder nicht. Dies hängt bei einer vorhandenen Adaptation von allen zuvor gegebenen Signalen (im Zeitintervall t_A) sowie dem zeitlichen Abstand t_P zu ihnen ab.

Im idealen Falle sollte diese Pausenzeit so lange ausgedehnt werden, bis eine Beeinflussung der Wahrnehmungsschwelle durch Adaptation ausgeschlossen
Abbildung 2.9: Signalfolge bei einem Adaptationsversuch. Die gestrichelte Linie stellt eine „worst case“-Abschätzung eines beliebigen Testsignals dar.

werden kann, d.h. die Testsignalhöhe I_T ist minimal. Untersuchungen zeigten hierbei sowohl ein Kurzzeit- als auch ein Langzeitverhalten, letzteres mit Zeitkonstanten im Minutenbereich, welche beim Einhalten der Pausen die Versuchszeit über ein akzeptables Maß hin ausgedehnt hätten.

Betrachtet man jedoch ein einzelnes Signal einer fortgeführten Untersuchung (mit nur kurzen Pausen zwischen den Testsignalen), so kann man alle vorausgegangenen Signale zu einem einzigen anhaltenden „worst case“-Adaptationssignal zusammengefasst werden: gestrichelte Linie in Abbildung 2.9. Untersuchungen mit solchen Signalfolgen zeigten eine relative Schwellenänderung, die schließlich in eine Sättigung übergeht.

Schwellenbestimmung

Bereits während der Adaptationsuntersuchungen zeigte sich, dass die subjektiv angegebenen Schwellen der einzelnen Probanden in einem viel stärkeren Maße von dem aktuellen Befinden des Probanden abhängig als etwa bei den Phosphen-Untersuchungen. Es wurde daher eine Methode gesucht, die von einer subjektiven, individuellen Bewertung unabhängig ist bzw. diese Bewertung eliminiert. Hierfür wurde die in der Psychologie entwickelte Signalerkennungstheorie (signal detection theory, SDT), welche ursprünglich für adäquate Reize entwickelt wurde, auf die inadäquate Reizung übertragen.

Eine mittels des confidence rating-Verfahrens durchgeführte Untersuchung ist exemplarisch in den Bildern 2.10 bis 2.12 skizziert. Grob gesagt ist es das vorrangige Ziel der SDT nicht, „eine Schwelle“ zu finden, sondern eine Reiz-
Abbildung 2.10: Receiver operating characteristic-Diagramm eines Probanden bei einer Reizstärke von $I = 160 \mu A$ (rms) bei $f = 50$ Hz. Die Winkelhalbierende bedeutet, daß der Proband nicht zwischen Signal und Blindversuch unterscheiden kann.

Abbildung 2.11: Receiver operating characteristic-Diagramm des selben Probanden, jedoch bei der Reizstärke $I = 310 \mu A$ (rms).
Abbildung 2.12: Auswertung des Detektierbarkeitsmaßes \(d' \) aus den obigen und weiteren Messungen.

stärke, bei der sich das Antwortverhalten des Probanden statistisch ändert. Aus den einzelnen receiver operating characteristic-Kurven (kurz ROC-Kurven) kann dann eine von dem Antwortverhalten des Probanden unabhängige, kriteriumsfreie Größe ermittelt werden, das Detektierbarkeitsmaß \(d' \). Es ergibt sich aus der experimentell bestimmten Wahrscheinlichkeit \(p(\text{yes}|SN) \), dass der Proband ein Signal wahrnehmen konnte, und der Wahrscheinlichkeit \(p(\text{no}|SN) \), dass er kein Signal wahrnehmen konnte. Kann der Proband kein Signal erkennen, so ergibt sich im ROC-Diagramm eine Ursprungsgerade (Abbildung 2.10); ein hohes, deutlich merkbares Signal hingegen kann sicher bemerkt werden (Abbildung 2.11).

Hier interessiert die Reizstärke (Stromstärke), für welche die Wahrnehmbarkeit, also das Detektierbarkeitsmaß \(d' \), gerade zu Null wird (Abbildung 2.12). Unter den im Experiment gewählten Bedingungen kann unterhalb dieser Stärke der Proband nicht unterscheiden, ob ein Strom fließt oder nicht. Dies ist aber genau die gesuchte Eingangsgröße für die Stromdichtebestimmung.

Die Vorteile der SDT sind

- Trennung von subjektiven und objektiven Variablen bei der Schwellensuche und
- ein vom Probanden nicht beeinflussbares Ergebnis.

Die in der SDT verwendeten Methoden besitzen jedoch auch Nachteile, so ist

- eine aufwendige, rechenintensive Auswertung notwendig, die eine Kontrolle unmittelbar nach der Messung (Erfolgskontrolle) erfordert, und

- das gesamte Verfahren ist, da es zur statistischen Auswertung einer Vielzahl von Probandenantworten bedarf, sehr zeitintensiv.

Ergebnisse

2.7 Herzschrittmacher in niederfrequenten magnetischen Feldern des Alltags

A. Scholten, J. Silny; C. Stellbrink

Problematik

Induktion von Störspannungen im Körper

Abbildung 2.13a zeigt schematisch einen menschlichen Oberkörper, der homogen mit einem auf seiner Oberfläche senkrecht stehenden niederfrequenten Ma-
Abbildung 2.13: Induktionsmechanismus in einem Thorax mit einem unipolaren, linkspektoral implantierten Herzschrittmachersonystem: (a) Induktionsschleife IS 1 repräsentiert die Körperschleife; die HSM-Elektrode-Gewebe-Schleife ist als IS 2 gekennzeichnet. (b) Zeichnung eines vereinfachten Ersatzschaltbildes. Die Markierungen „l“ und „c“ bezeichnen korrespondierende Positionen in (a) und (b).

Im Oberkörper ist linkspektoral ein unipolares Herzschrittmachersonystem implantiert. Das Herzschrittmachersonystem besteht zum einen aus dem Herzschrittmacher (HSM) selbst, der in Abbildung 2.13b durch den Widerstand \(R_p \) repräsentiert wird. Zum anderen besteht das HSM-System aus der Elektrode (Widerstand \(R_i \)), die einerseits die elektrischen Stimulationsimpulse zum Herzen führt und andererseits die elektrische Eigenaktivität des Herzens ableitet. Zusammen mit einem Gewebestück (Widerstand \(R_{b1} \)) zwischen dem Herzschrittmachergehäuse und dem Elektrodenkopf spannt das HSM-System eine Induktionsfläche auf. Sowohl in Abbildung 2.13a als auch in Abbildung 2.13b ist diese Induktionsfläche mit ‘IS 2’ bezeichnet. Eine weitere Induktionsschleife ‘IS 1’ wird durch den elektrisch leitfähigen Oberkörper aufgespannt. Wie aus den Abbildungen 2.13a und 2.13b erkennbar, haben die beiden Induktionsschleifen ‘IS 1’ und ‘IS 2’ ein gemeinsames Leiterstück in Form des Gewebes zwischen Herzschrittmachergehäuse und Elektrodenspitze (Widerstand \(R_{b1} \)). Dieser Umstand

Experimentelle Überprüfung

wodurch eine dreidimensionale Nachbildung im Modell möglich ist. Anhand der Röntgenbilder werden vier Simulationsanordnungen konstruiert: jeweils eine für das linkspektroral und das rechtspektroral implantierte atrial und ventrikulär gesteuerte unipolare HSM-System.

Die Simulationsanordnung besteht aus zwei gleichförmigen Induktionsschleifen: einer Referenzschleife und einer HSM-Schleife. Beide Schleifen bestehen aus Kupferlackdraht, wobei die Referenzschleife im Gegensatz zur HSM-Schleife die gleiche dreidimensionale Form wie die HSM-Systeme besitzt.

... das im Falle der Referenzschleife durch Kupferlackdraht nachgebildet wird, bleibt nun wie auch beim realen HSM-System offen. Die Simulationsanordnung wird in das Trogmodell zunächst so eingebracht, dass sie eine in den Röntgenbildern entsprechende realitätsgetreue Position im Körper einnimmt. Währenddessen werden die durch das Magnetfeld in die Schleifen induzierten Spannungen von den Widerständen R_p und R_r abgegriffen.

Die in beiden Schleifen induzierten Spannungen werden für verschiedene horizontale Verschiebungen gemessen.

Ergebnisse

Die Untersuchungen zeigen, dass die bisherige Betrachtung des Herzschnittmachersystems als eine geschlossene Induktionsschleife nicht die tatsächlichen Gegebenheiten im menschlichen Körper in hinreichender Form wiedergibt. In einer guten Übereinstimmung ergeben die theoretischen Abschätzungen wie auch die Messungen im Modell, dass sich die in die Induktionsschleifen HSM-System und Oberkörper induzierten Spannungen je nach der Position im Körper mehr oder weniger überlagern. Durch diese Superposition wird in Abhängigkeit von der Implantationslage die Störspannung am Eingang des Herzschnittmachers höher oder niedriger ausfallen.

Eine weitere aus den Messungen ersichtliche, wichtige Erkenntnis ist, dass der bisher angenommene und in zahlreichen Untersuchungen zugrunde gelegte Wert
Abbildung 2.16: Störschwellen im magnetischen Wechselfeld in Abhängigkeit von der Frequenz. Zugrunde gelegt ist ein linkspektoral implantiertes, atrial gesteuertes unipolares HSM-System mit einer Empfindlichkeit von 1 mV.

von 570 cm² für das Maximum der resultierenden Induktionsfläche eines HSM-Systems im Körper übertrieben ist und vielmehr im Bereich von 220 bis 250 cm² liegt.

Abbildung 2.16 zeigt den Verlauf der durch die Untersuchungen im Modell abgeleiteten Störschwellen am Beispiel von vier linkspektoral implantierten, atrial gesteuerten unipolaren HSM-Systemen mit einer Empfindlichkeit von 1 mV. Es ist zu erkennen, dass der Störschwellenverlauf bei den einzelnen Implantaten sehr unterschiedlich ist. Bei Herzschnittmacher ‘HSM 3’ steigt die Störschwelle nach Erreichen eines Minimums bei etwa 60 Hz mit steigender Frequenz wieder. Bei den anderen Aggregaten sinkt sogar die Störschwelle tendenziell mit steigender Frequenz. Bei der sehr praxisrelevanten Frequenz von 50 Hz liegt der ‘worst-case’-Schwellenwert für die magnetische Induktion bei etwa 30 μT (RMS). Bei einer Störfrequenz von 218 Hz, die häufig bei Diebstahlsicherungsanlagen (EAS-Systemen) anzutreffen ist, liegt die ungünstigste Störschwelle auch in dieser Größenordnung. Eine weitere im Alltag anzutreffende Frequenz ist die der Deutschen Bahn mit 16 2/3 Hz. In diesem Fall liegt die Störschwelle bei etwa 100 μT (RMS) (vgl. Abbildung 2.16). Die Maximalwerte der magnetischen Flussdichte, die von den oben genannten Störquellen ausgehen kann, sind in Tabelle 2.4 aufgelistet.

Der Vergleich mit den erwähnten, aus Abbildung 2.16 entnommenen Stör-
Tabelle 2.4: Maximale Flussdichten von dominierenden niederfrequenten magnetischen Feldern des Alltags.

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Flussdichte B_{max}</th>
<th>Frequenz f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochspannungsfreileitung</td>
<td>$60 \mu T(RMS)$</td>
<td>50 Hz</td>
</tr>
<tr>
<td>EAS-System</td>
<td>$800 \mu T(RMS)$</td>
<td>218 Hz</td>
</tr>
<tr>
<td>Zug</td>
<td>$55 \mu T(RMS)$</td>
<td>$16\frac{2}{3}$ Hz</td>
</tr>
</tbody>
</table>

2.8 Störung medizinischer Implantate durch mehrere unabhängige hochfrequente Felder

J. Silny; K. Martin, V. Hombach

Problematik

Mit der rapiden Verbreitung des Mobilfunks steigt auch die Wahrscheinlichkeit, dass an einigen Orten, z.B. im Zug, mehrere Handys oder andere Quellen niederfrequenter und hochfrequenter elektromagnetischer Felder in nahe Umgebung eines Implantatträgers gleichzeitig betrieben werden. Es ist bekannt, dass bereits einzelne Handys elektronische Implantate, wie z.B. Herzschrittmacher oder Insulinpumpen, stören können, wenn der gegenseitige Abstand unter 20 cm liegt. Dagegen ist völlig unklar, wie sich die Beiträge mehrerer unabhängiger hochfrequenter und niederfrequenter Quellen bezüglich der Störschwelle eines Implantats addieren und welche Sicherheitsabstände bei örtlicher Häufung der Quellen elektromagnetischer Felder zur Vermeidung einer Störung von Implantaten nötig sind. Zur Klärung der Superposition mehrerer unabhängiger hochfrequenter Felder in der Elektronik des Implantats, die zum Erreichen der Störschwelle führt, werden hier als ein Aspekt der Problematik exemplarische Benchmark-Test-Untersuchungen mit Herzschrittmachern vorgestellt.

Verhalten der Implantat-Elektronik im starken hochfrequenten Feld

Eine Reihe von Implantaten ist mit elektronischen Schaltkreisen ausgestattet, die die elektrischen Signale von Sensoren verschiedener vitaler Charakteristika verstärken, verarbeiten und/oder die Applikation elektrischer Reize im Körper ermöglichen. Dabei ist die Elektronik an das niederfrequente Spektrum der Körper-Signale angepasst, im Idealfall soll sie nicht auf hochfrequente Signale reagieren. Experimente zeigen jedoch, dass sie insbesondere für starke hochfrequente Signale eine Nichtlinearität und ein starkes Tiefpassverhalten

\[^1\text{DeTeMobil Deutsche Telekom MobilNet GmbH, Darmstadt}^1\]
Abbildung 2.17: Testanordnung der Herzschrittmacher-Benchmarktests

Benchmark-Tests mit Herzschrittmachern

Die Testanordnung ist in Abb. 2.17 skizziert. Der mit einem den Körper repräsentierenden 500 Ω-Widerstand abgeschlossenen Herzschrittmacher-Eingang wird alternativ von einem, zwei, drei oder vier Generatoren mit hochfrequentem Signal ausgesteuert. Die Frequenzen der einzelnen hochfrequenten Signale sind versetzt, die Generatoren 2, 3 und 4 werden gleichzeitig alternativ mit 2 Hz, 8 Hz und 217 Hz pulsmoduliert oder ohne Modulation betrieben. Die Am-
Amplituden aller Generatoren sind gleich, wobei sie in der Summe verstärkt oder gedämpft werden können. Das Ergebnis der Messung ist die Amplitude der jeweiligen hochfrequenten Störsignale bei einer gegebenen Modulation, die zu einer Störung des Herzschrittmachers führt.

Mehr als 50 ältere und moderne Herzschrittmacher wurden nach diesem Verfahren getestet. Die Resultate zeigen übereinstimmend, dass einzelne oder zusammengesetzte hochfrequente Felder im Herzschrittmacher alle bekannten Störungen, von Umschalten auf den festfrequenten Betrieb über temporäre bis zu vollständiger Inhibition, verursachen können. Die Störschwelle ist stark typenabhängig, wobei auch einige neue Implantate eine relativ hohe Störanfälligkeit auf elektromagnetische Felder aufweisen. Die Beiträge zur Störschwelle mehrerer unabhängiger hochfrequenter Quellen addieren sich mit ihrer Leistungsdichte und nicht, wie zunächst angenommen, mit ihren Feldstärkenamplituden. Diese Feststellung ist wesentlich für die Festlegung der zulässigen Leistungen mehrerer unabhängiger hochfrequenter Quellen, die an einem Ort betrieben werden. Auf diese Weise kann die nachfolgend erforderliche Überprüfung des Eindringens der unterschiedlichen Quellen hochfrequenter und niederfrequenter Felder in den Körper und in Implantate anhand von Modellen sowie in Untersuchungen mit Probanden und Patienten durchgeführt werden. Der Störpegel bzw. die vorhandenen Sicherheitsabstände können für eine beliebige Anzahl unabhängiger hochfrequenter Quellen aus dem quadratischen Mittelwert der im Implantat einzeln erzeugten Beiträge der elektrischen Feldstärke ermittelt werden.
2.9 Ausbau und Pflege der Wissensbasierten Literaturdatenbank (WBLDB)

F. Klubertz, R. Wienert, Th. Göttgens, M. Vassileva, Th. Marquardt, J. Silny sowie externe Experten

Einleitung

Die „Wissensbasierte Literaturdatenbank über die Wechselwirkungen elektromagnetischer Felder mit dem Organismus“ stellt den Versuch dar, mittels moderner Datenbank- und Internet-Technologien den aktuellen Wissensstand der wissenschaftlichen Literatur zu dem interdisziplinären Themenkomplex biologischer Wirkungen elektromagnetischer Felder (EMF) fortlaufend zu erfassen. Dies dient sowohl als Grundlage für die Formulierung und Beantwortung aktueller Fragestellungen als auch für die Beurteilung des aktuellen Status Quo auf diesem Forschungsgebiet. Dabei werden die folgenden Zielsetzungen verfolgt:

- möglichst vollständige Erfassung der publizierten wissenschaftlichen Arbeiten auf dem Gebiet der Wirkungen hoch- und niederfrequenter elektromagnetischer Felder auf den Organismus
- Extraktion der relevanten physikalischen, biologischen und medizinischen Inhalte nach einheitlichen Kriterien durch Fachleute
- Experten-Bewertung der Qualität der Publikationen sowohl einzeln als auch im Kontext ihres Themas („Rating“)
- öffentliche und kostenlose Bereitstellung der gewonnenen Informationen über das Internet für Fachleute
- vollständige inhaltliche Unabhängigkeit, d.h. keine thematischen Vorgaben oder Beschränkung auf bestimmte Zeitschriften, soweit qualitative Mindestvoraussetzungen erfüllt sind
- größtmögliche Transparenz im Auswahl- wie auch im Auswertungsprozess der Publikationen
- möglichst zeitnahe Aufnahme aktueller Artikel sowie die schrittweise Einarbeitung älterer Publikationen
Verfahren

Um den aktuellen Wissenstand auf diesem Gebiet effektiv erfassen und abbilden zu können, ist eine Reihe von Arbeitsschritten erforderlich, die auf Grund der gewonnenen Erfahrungen laufend angepasst und verbessert werden:

- Recherche nach themenspezifischen Publikationen über die Einwirkungen elektromagnetischer Felder auf den Organismus, Implantate und Körperhilfen in Bibliotheken, Online-Katalogen und Datenbanken. Auswertung der Literaturangaben bereits vorhandener Artikel, um noch nicht erfasste Publikationen auf zu finden sowie Aufbau und Abfolge der zuvor durchgeführten Experimente nachvollziehbar zu halten

- Beschaffung von für relevant gefundenen, bereits publizierten Artikeln aus wissenschaftlichen Zeitschriften (bevorzugt „peer-reviewed“) und detaillierten Arbeitsberichten als Papier- oder elektronische Kopie sowie ihre Archivierung in der lokalen femu-Bibliothek. Gesammelt werden ebenfalls Übersichtsartikel („reviews“) und wissenschaftliche Korrespondenz („comments, letters, replies“), nicht aber Abstracts, verschriftete Vorträge, Kongress-Berichte, Zusammenfassungen aus Poster-Sessions etc.

- Vorsortierung der Artikel in eine der drei Hauptkategorien „medizinisch-biologische“, „technisch-dosimetrische“ oder „epidemiologische“ Publikationen

- Kennzeichnung der erfassten Artikel und Import mit ihren bibliografischen Angaben als Datensätze in die WBLDB, wo sie den Nutzern online zur Verfügung stehen

- Extraktion der Expositionscharakteristika der einzelnen Artikel, die den bestehenden Datensätzen hinzugefügt werden
• Zusammenfassung einer Anzahl von Artikeln aus einem Themenbereich, Export als Datenpaket und Versand an Experten für dieses Fachgebiet

• Extraktion der Inhalte der Artikel in strukturierter Form und Bewertung der Qualität der einzelnen Artikel durch die Experten

• Re-Import der bearbeiteten Artikel in die WBLDB und Bereitstellung der „Online-Reports“ im Internet. Zur Nutzung des gesamten Umfangs der WBLDB ist eine einmalige, kostenlose Anmeldung erforderlich. Die angegebenen Daten dienen ebenso wie zwei online durchgeführte Umfragen der besseren Einschätzung der unterschiedlichen Nutzerkreise und der laufenden Anpassung des Angebots an deren Bedürfnisse

Status

Literatur

Bei Redaktionsschluss dieses Beitrags (ca. ein Monat vor Ende des Berichtszeitraums), sind in der WBLDB ca. 5.470 Publikationen datentechnisch erfasst; davon sind 5.252 bereits nach ihren inhaltlichen Schwerpunkten kategorisiert, auf die zutreffenden Profile verteilt und somit für den Nutzer verwendbar. Mit ca. 1.100 neu hinzu gekommenen Artikeln ist der für Ende 2001 geplante Stand erreicht; von ihnen stammen etwa 350 Arbeiten aus dem HF-Bereich (1 MHz - 300 GHz) und ca. 500 aus dem NF-Bereich (0 - 1 MHz). Weitere 210 bereits recherchierte Artikel befinden sich derzeit im Beschaffungs- bzw. Kategorisierungsprozess.

Die 5.252 zum jetzigen Zeitpunkt verfügbaren Publikationen sind unterhalb der Hauptkategorien den vorhandenen Profilen, wie aus Abbildung 2.18 ersichtlich, zugeordnet.

Die Anzahl der Zeitschriften, in denen relevante Artikel zur Thematik gefunden wurden, hat sich im vergangenen Jahr auf jetzt 845 (124 mehr als im Vorjahr) erhöht. Die Zeitschrift „Bioelectromagnetics“, in der die meisten und
Abbildung 2.18: Profile der WBLDB und ihr aktueller Füllstand
Abbildung 2.19: Bestand an gespeicherten Publikationen nach Jahrgängen
wichtigsten themenspezifischen Beiträge veröffentlicht werden, ist mit einem Bestand von 1.120 Publikationen praktisch vollständig in der WBLDB erfasst. Erwartungsgemäß führt „Bioelectromagnetics“ weiterhin die Liste der 20 wichtigsten Journals an, die mit zusammen rund 2.550 Artikeln (Vorjahr 2.000) über 50% der bisher erfassten Publikationen enthalten. Mehr als die Hälfte der in diesem Jahr neu erfassten Artikel stammt aus 20 Journals.

Nutzung

Die Anzahl der freiwillig registrierten Nutzer, die häufig mit der WBLDB arbeiten, hat sich im vergangenen Jahr auf 516 (Vorjahr: 250) verdoppelt; die Zahl der Teilnehmer an der Online-Umfrage nach beruflicher Herkunft bzw. Selbsteinschätzung des Vorwissens ist auf rund 1.850 Personen (Vorjahr: 870) angestiegen.

Aus der Auswertung der Zugriffsstatistiken ergibt sich, dass die Inanspruchnahme des Online-Angebots der WBLDB weiterhin kontinuierlich steigt: mit einem Spitzenwert von 38.000 (Vorjahr 28.000) und einem Durchschnitt von rund 26.000 (Vorjahr 12.000) Zugriffen pro Woche hat sich die Zahl gegenüber dem Vorjahr etwa verdoppelt (siehe Abbildung 2.20).

Voraussetzung für diese umfängliche Nutzung der WBLDB war die kontinuierliche Pflege aller Hard- und Software-Komponenten (einschließlich regelmäßiger Updates aller System-, Backup- und Sicherheits-Software). Da die Menge
Abbildung 2.20: Jahresverlauf der Zugriffe auf den Webserver
der über den femu-Server übertragenen Daten im vergangenen Jahr auf fast 9 GigaByte angewachsen ist (das entspricht ca. 2.700 gefüllten Aktenordnern oder ca. 1,5 Mio. A4-Seiten), brachte die erfolgte Geschwindigkeitsoptimierung der Datenübertragung eine wesentliche Verbesserung der Zugriffszeiten mit sich.
2.10 Erarbeitung und Implementierung eines neuen Zweiges der WBLDB für „Epidemiologische Studien“

R. Wienert; J. Schütz¹; J. Silny

Struktur der WBLDB

In der „Wissensbasierten Literaturdatenbank über die Einwirkungen elektromagnetischer Felder auf den Organismus (WBLDB)“ soll die wissenschaftliche Literatur über Wirkungen elektro-magnetischer Felder auf Gesunde und auf Patienten erfasst werden. Dabei muss der unterschiedlichen Struktur verschiedener Veröffentlichungstypen Rechnung getragen werden. Der Aufbau der Datenbank ist modular und erlaubt das Hinzufügen neuer „Untersuchungs-Zweige“ (siehe Abbildung 2.21).

Die gemeinsamen Merkmale aller Publikationen (bibliographische Angaben und Expositionsscharakteristika — d.h. Angaben über die Befeldung) werden bei allen Arbeiten in den gleichen Datenstrukturen (Tabellen) aufgenommen. Je nach Art der in der Publikation beschriebenen Untersuchung werden die Untersuchungsangaben und -informationen in speziell dafür entwickelte Datenbankstrukturen eingetragen.

Vorgehen bei der Erstellung eines neuen „Datenbankzweiges“

Um den Aufwand und die Komplexität bei der Neuimplementierung eines Untersuchungszweiges nachvollziehen zu können, werden im folgenden die einzelnen

¹Institut für Medizinische Statistik und Dokumentation
der Johannes-Gutenberg-Universität Mainz
Abbildung 2.21: Bisherige Struktur der WBLDB — der Zweig „epidemiologische Studien“ war vorgesehen, aber noch nicht implementiert

Schritte von der Konzeption bis zum Einsatz des fertigen Programms aufgezählt und erläutert.

1. Auswahl eines Experten

Zunächst muss ein ausgewiesener Experte gefunden werden, der einen umfassenden Überblick über die Thematik hat und bereit ist, bei der Erstellung mitzuarbeiten.

2. Konzeptionierung

Die Erstellung eines Konzeptes ist die wohl schwierigste Aufgabe bei der Erstellung eines neuen Zweiges. Hier muss evaluiert werden, welche verschiedenen Studienarten im betreffenden Themenkomplex vorkommen können und welche Informationen innerhalb dieser Studienarten wiederum später dediziert in die Datenbank eingetragen werden sollen. Dabei ist es von entscheidender Bedeutung, einen idealen Kompromiss zwischen Detailgrad und Übersichtlichkeit zu finden. Je höher der Detailgrad, desto präziser werden später die Berichte über die Publikationen; mit dem De-
tailgrad steigt jedoch auch die Komplexität des zu erstellenden und bedie-
nenden Programmes; dies wiederum wirkt sich negativ auf die Bereitschaft
von Experten aus, sich mit in das Auswertungsprogramm einzuarbeiten.
Weiterhin ist die gezielte Suche in einer zu detaillierten Datenbankstruktur
nicht nur aufwendig und schwierig, sondern erzielt auch mitunter nicht
die gewünschten Ergebnisse, da oftmals vom Anwender in den falschen
(Detail-)Feldern gesucht wird.

3. Softwareimplementierung
Zur Programmierung gehört nicht nur die Erstellung des eigentlichen Da-
teneingabeprogrammes, sondern auch die Schaffung entsprechender Da-
tenstrukturen zur Aufnahme der Extraktionen und Bewertungen.
Zunächst wird eine lokale Datenbank erstellt, die alle denkbar möglichen
Daten des formularierten Konzeptes aufnehmen kann. Anschließend wird
auf der Grundlage der Datenbank eine Eingabeschnittstelle programmiert,
die verschiedene Funktionalitäten aufweisen muss: Eingabeverifikationen,
konditionale Eingabemaske (z.B. wenn Studienart „X“ ausgewählt, sol-
len nur Eingabemaske „A“ „F“ und „T“ zur Verfügung stehen), Kopier-
funktionen von Datenbankeinträgen etc. Nach ersten bestandenen Funkti-
onstests muss schließlich noch eine Setup-Routine entwickelt werden, die
die lokale Datenbank und das Eingabeprogramm auf den Anwendung-
rechner kopiert und einrichtet. Diese Installationsroutine ist nötig, um
Datenbanklinks und -pfade in der Systemkonfiguration des Expertenrech-
ners zu konfigurieren.

4. Testphase
Der Experte überprüft die Funktionalität und die Übereinstimmung zwi-
schen seiner Konzeption und der programmiertechnischen Umsetzung. Zu-
sätzlich werden erste Publikationen testevalviert; hierbei ergeben sich zu-
meist noch Strukturveränderungen und -verbesserungen.

5. Revision
Die in der Testphase auftretenden Probleme werden behoben und die letz-
ten Veränderungen an Struktur und Programm werden vorgenommen,
bevor das Evaluierungswerkzeug ein letztes Mal getestet wird.
6. Erstellung von Import-/Exporttools und eines Reportgenerators

Nach Durchführung aller genannten Schritte kann das Programm bei ausgewählten Experten eingesetzt werden. Es kann schließlich mit der Extraktion und Bewertung von Studien und Untersuchungen im entsprechenden Themenkomplex begonnen werden.

Entwicklung des Zweiges „Epidemiologische Studien“

Die Oberfläche zur Dateneingabe des epidemiologischen Zweiges wurde, um auch Epidemiologen im internationalen Bereich zu einer Zusammenarbeit motivieren zu können, ausschließlich in englischer Sprache entwickelt.

Für jede Studienart werden die Hauptcharakteristika (“study characteristics“ — Abbildung 2.22) angegeben. Je nach Studientyp (“study type“ — Abbildung 2.23) werden dann die zugehörigen Formulare angezeigt.

Um die Komplexität auch nur ansatzweise verständlich machen zu können, werden im folgenden die in der Implementierung möglichen Studientypen und Formulare aufgelistet.

Studientypen:

- feasibility study (Machbarkeitsstudie)
- hypothesis (Hypothese)
Abbildung 2.23: Bildschirmansicht der Programmoberfläche zur Eingabe der Extraktionen und Bewertungen von epidemiologischen Studien: Auswahl der verschiedenen Studientypen — je nach Auswahl erscheinen verschiedene Registerblätter
• exposure study (Expositionsstudie)
• validation study (Validierungsstudie)
• survey/case series (Survey-/Fallstudie)
• correlation study (Korrelationsstudie)
• proportional ratios/linkage (Record Linkage-Studie)
• cross-sectional (Querschnittsstudie)
• case control (Fallkontrollstudie)
• cohort (Kohortenstudie)
• meta-analysis on published results (Literaturbasierte Meta-Analyse)
• meta-analysis on pooled data (auf Originaldaten basierende Meta-Analyse)
• re-analysis (Re-Analyse)
• (narrative) review (Review/Übersichtsartikel)

Je nach Studientyp zur Verfügung stehende Formulare:

• rational/objectives (Rational/Ziele)
• reasons for reanalysis (Gründe für eine wiederholte Analyse)
• study basis (I–IV) (Studiengrundlage 6 verschiedene Formulare)
• exposure assessment (I–II) (Expositionsbewertung 2 verschiedene Formulare)
• exposure parameters (Expositionsparameter)
• statistical methods (Statistische Methoden)
• results: risk estimates (Ergebnisse: Risikoabschätzung)
• results: narrative (Ergebnisse: Bericht)
• conclusions (Folgerungen)
• ratings (I–VIII) (Bewertung 8 verschiedene Formulare)
• rating (Gesamtbewertung)

2.11 Informationsportal über die Wirkungen elektromagnetischer Felder auf den Menschen — basierend auf der WBLDB

R. Wienert, F. Klubertz, M. Dobel, T. Göttgens; C. Spreckelsen\(^1\); J. Silny

Problematik

Die WBLDB besteht derzeit aus den Extraktionen und Bewertungen von Publikationen, die von Experten der entsprechenden Wissensgebiete vorgenommen wurden. In erster Linie decken diese Daten den Informationsbedarf von Wissenschaftlern und Fachleuten, die gerade die Detaltreue und -tiefe der zur Verfügung gestellten Informationen schätzen. Über das Internet haben zwar alle Interessierten Zugriff auf sämtliche Daten der WBLDB, aufgrund der hohen Komplexität und vielen technischen und medizinischen Sachbegriffe kann aber nicht jeder Nutzer die Inhalte und Aussagen der wissenschaftlichen Publikationen nachvollziehen und richtig interpretieren. Um gewünschte und genaue Suchergebnisse zu erhalten, müssen zudem die Abfragen an die Datenbank bisher nicht nur sehr gezielt gestellt werden, sondern setzen ebenfalls Fachkenntnisse voraus. Bei der Suche wird häufig nach sehr allgemeinen Begriffen (z.B. „Krebs“) gefragt, die zugrunde liegenden Publikationen verwenden jedoch detaillierte Fachbegriffe („Karzinom“, „Leukämie“, „Tumor“ etc.). Aus diesen Gründen sind die Datenbankinhalte ohne zusätzliche Hilfsmittel für Nichtfachleute nur sehr schwer zu erschließen.

Schließlich wird die Wissensbasierte Literaturdatenbank derzeit ausschließlich in englischer Sprache entwickelt und betrieben, da nahezu die gesamte Fachliteratur in Englisch publiziert wird und in deutschsprachigem Gebiet nicht ausreichend Experten für die Extraktion und Bewertung zur Verfügung stehen;

\(^1\)Institut für Medizinische Informatik des Universitätsklinikums der RWTH Aachen
dies führt zu einem weiteren Verständnisproblem für den nicht versierten Nutzer.

Umfrage

Um ein Wissensportal für heterogene Nutzergruppen aufbauen und die Benutzerfreundlichkeit der Such- und Präsentationstechniken optimieren zu können, müssen der Informationsbedarf und das Kompetenzniveau der verschiedenen Nutzergruppen bekannt sein. Zur Erhebung dieser Daten wird der Nutzer der Datenbank auf der Webseite ermutigt, an einer Umfrage teilzunehmen und entsprechende Fragebögen auszufüllen. Nach erfolgter Teilnahme kann anschließend das Umfrageergebnis eingesehen werden.

Mittels des allgemeineren Fragebogens wird das Interesse des Besuchers und seine Motivation für die Benutzung der Datenbank erfasst; des weiteren wird er gefragt, wie er von der Datenbank erfahren und wie er die Webseite gefunden hat. Der zweite, speziellere Fragebogen nimmt verschiedene Informationen über die angesprochenen Zielgruppen auf. In 32 Fragen geht es um die Korrelation zwischen Akzeptanz von elektromagnetischen Feldern (z.B. „Würde es Ihnen etwas ausmachen, in der unmittelbaren Nähe einer Basisstation für Mobilfunk zu leben?“) und der Benutzung Feld emittierender Geräte (z.B. „Benutzen Sie ein Handy?“), das Verständnis der Fachterminologie (z.B. „Wofür steht die Abkürzung SAR?“) und personenbezogene Daten.

Die aus diesen Umfragen zusammengetragenen Informationen sind entscheidend für die zielgruppengerechte Weiterentwicklung der Benutzerschnittstelle, da ohne die erhobenen Daten keine angepasste Hilfestellung des Informationsportals möglich ist.

Erste Auswertungen der Umfrageergebnisse zeigen, dass viele grundsätzliche Fachbegriffe nicht vorausgesetzt werden können, die für das Verständnis von Fachliteratur zwingend notwendig sind. Und obwohl die Nutzerstruktur aufzeigt, dass ein Großteil der Besucher sich beruflich mit dem Themenkomplex „Elektromagnetische Umweltverträglichkeit“ auseinander setzt, werden aufgrund der Interdisziplinarität viele Termini nicht richtig verstanden oder interpretiert.

Durch Auswertung der Umfrage hat sich schließlich gezeigt, dass der Informationszugang zwingend erleichtert und das Informationsangebot erweitert
werden muss, um eine breitere Nutzergruppe anzusprechen.

Das Informationsportal

Aus der Webseite der WDLDB soll eine zentrale Anlaufstelle zum Thema „Elektromagnetische Umweltverträglichkeit“ auch für Nichtfachleute entwickelt werden; aus diesem Grund muss der Internet-Auftritt der Datenbank um ergänzende Angebote und Hilfestellungen erweitert werden (siehe Umfrage). Der Nutzer soll sich mit Hilfe des Datenbankportals die EMVU-Problematik, aus verschiedenen (Interessens-) Richtungen kommend, erschließen können.

Mit der Hilfe des Informationssystems sollen Juristen und Politiker sich z.B. über die Einhaltung von Grenzwerten informieren können, für Mediziner werden nachvollziehbare Informationen über potenzielle Gesundheitsgefährdungen durch elektromagnetische Felder angeboten und für Laien werden verständliche Zusammenfassungen über den Stand der Forschung präsentiert.

Die Auswertung der Umfrageergebnisse hat gezeigt, dass durch eine Filterung der Datenbankinhalte nicht das Ziel erreicht werden kann, eine allgemein verständliche Informationsbasis bereit stellen zu können; selbst die auf ein Minimum reduzierte Kern-Information einer Publikation kann ohne entsprechende Hilfestellung kaum für Nichtfachleute adäquat dargestellt werden.

Im Folgenden wird eine Übersicht über geplante und teilweise schon realisierte Hilfsangebote für die in der WBLDB enthaltenen Informationen gegeben (siehe auch Abbildung 2.24).

Glossar

Mit Hilfe des Glossars kann sich der Laie das wichtigste Hintergrundwissen auf dem Gebiet der biologischen Wirkungen elektromagnetischer Felder aneignen. Diese Datensammlung soll sowohl „stand-alone“ als Lexikon zur Verfügung stehen, als auch die Bewertungen und Extraktionen (Reports) der Publikatio-
nen aus der WBLDB erläutern und erklären; dazu sollen alle Fachbegriffe in den Reports mit den Begriffen im Glossar per Hyperlink verknüpft werden.

Datenbank der im Alltag auftretenden Felder

In der Datenbank sollen Quellen elektrischer, magnetischer und elektromagnetischer Felder des Alltags kategorisiert und beschrieben werden. Es sollen...
Datenbank der Expositionsquellen

Abbildung 2.25: Beispieldiagramm „Datenbank der im Alltag auftretenden Felder“

sowohl die Art der Exposition auf die Umwelt (geschätzte Distanz der Quelle zum exponierten Objekt), exponiertes Objekt (Mensch, Tier, bestimmte Körperteile etc.), Leistungsabstrahlung der Quelle, geschätzte Expositionszeit etc. als auch die technischen Charakteristika (z.B. Art, Zeitabhängigkeit, Polarisation, Frequenz, Modulation der Felder) in die Datenbank aufgenommen werden.

Nach erfolgter Charakterisierung der wichtigsten Expositionsquellen kann die Datenbank über die Merkmale und technischen Parameter der Felder einzelner oder in einem Frequenzband vorhandener Quellen informieren. Die Parameter der Expositionsquellen können grafisch aufbereitet werden, um die Zusammenhänge und Unterschiede der verschiedenen Quellen verständlich zu machen. Es können z.B. dynamisch generierte zwei- und dreidimensionale Diagramme zur Verdeutlichung von Abhängigkeiten der Expositionsquellen bereit gestellt werden (Abbildung 2.25).

Fragenkatalog

Inferenzmaschine

Die erwähnten Hilfestellungen sind in ihrer eigenständigen Form zunächst nur direkt und separat nutzbar. Um diese Angebote zu verknüpfen und einen direkten Bezug zu der Datenbank WBLDB herzustellen, ist die Entwicklung einer sog. „Inferenzmaschine“ geplant. Wie in Abbildung 2.24 dargestellt, entsteht aus den Zusatzangeboten und der Inferenzmaschine das auf der Datenbank basierende Informationssystem.

Die Funktionsweise der Inferenzmaschine läßt sich anhand eines konkreten Beispiels erklären. Der Nutzer fragt sich „Kann Bahnfahren Krebs erzeugen?“ und gibt diese Frage an die Inferenzmaschine weiter (Abbildung 2.26).

Zur Generierung der Antwort (Abbildung 2.27) werden alle gefundenen Publikationen und deren Reports herangezogen und aufbereitet. Es ist nicht nur möglich, sich die mit Hilfe des Glossars erklärten Reports anzeigen zu lassen, es können auch automatisch Statistiken generiert werden. Sachverhalte können
Inferenzmaschine (Bsp. Fragestellung)

Inferenzmaschine (Bsp. Antwort)

Abbildung 2.26: Fragestellung — Beispiel

Abbildung 2.27: Antwort — Beispiel
dadurch besser verständlich gemacht werden und einzelne Publikation können in ihren richtigen Kontext gesetzt werden.
2.12 Elektrische Messungen des Nahrungs-
transportes im Gastrointestinaltrakt (GIT)

2.12.1 Impedanzverfahren zur hochauflösenden Erfas-
sung der Motilität im GIT

J. Silny

Problematisierung

Die herkömmlichen semi-invasiven intraluminalen Untersuchungsmethoden der Azidität, Alkalität oder Kontraktilität im GIT gewährleisten nur einen kleinen und dazu indirekten Einblick in den erfolgten Nahrungstransport. Die nichtinvasiven bildgebenden Verfahren sind nur zur Darstellung des Nahrungs-
transportes bei langsameren Motilitätsabläufen geeignet. Schnelle Vorgänge, wie sie z.B. im proximalen Ösophagus auftreten, können sie nicht ausreichend auflö-
sen, sehr langsamer Motilitätsmuster, z.B. im unteren GIT, können wegen erforderlicher Langzeituntersuchungen mit zu hoher BestrahlungsdoRis beim Roent-
gen oder auch wegen der zu hohen Kosten nicht durchgeführt werden.

Die Suche nach neuen, vorteilhaften Diagnoseverfahren, die für den Pa-
tienten schonend sind und gleichzeitig möglichst viele wichtige Motilitäts-
Charakteristika auch in der klinischen Routine liefern, ist nach wie vor aktuell.

Im Rahmen der klinischen Validierung wurden die postulierten Eigenschaften eines integralen Verfahrens, der so genannten elektrischen Impedanzmessung, bei der Charakterisierung der GIT-Motilität überprüft, bestätigt und in 19 Publikationen veröffentlicht. Das Impedanzverfahren hat inzwischen einen anerkannten Stellenwert in der klinischen Forschung des GIT erlangt. In der laufenden entscheidenden Phase muss in klinischen Untersuchungen ermittelt werden, welche Parameter des Impedanzverfahrens allein oder in Kombination mit anderen Standardverfahren zu klären und eindeutigen Diagnosen einzelner Erkrankungen des GIT, insbesondere in der klinischen Routine, herangezogen werden sollen.

 Kennwerte der Motilität aus Standardverfahren und dem Impedanzverfahren

Abbildung 2.28: Die fortschreitende Kontraktion der Muskelwand (2) im Segment III schiebt den Bolus (3) in Richtung des Segmentes I vor sich her. In den Segmenten I und IV ist die Muskulatur erschlafft. An der Spitze des Bolus können z.B. auch Luft oder Speichel (1) transportiert werden. Der Katheter in der Mitte erlaubt eine gleichzeitige elektrische Messung in vielen Messsegmenten zwischen je zwei benachbarten Elektroden (6).

die Unterteilung der Phasen I bis IV ermöglichen. Die aus multiplen Aufzeichnungen der Impedanz zu gewinnenden Kennwerte der Motilität sind in Tab. 2.5 aufgestellt und mit den wichtigsten Standard-Verfahren verglichen.
Tabelle 2.5: Kennwerte der Motilität, aufgenommen mit verschiedenen semi-invasiven und nicht-invasiven bildgebenden Verfahren

<table>
<thead>
<tr>
<th></th>
<th>IMPEDANZ</th>
<th>MANO-METRIE</th>
<th>PH-METRIE</th>
<th>DEHNUNGSMESSTREIFEN</th>
<th>RONTGEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>KONTRAKTIONS-WELLE</td>
<td>✓</td>
<td>✓*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PARTIELLE OKKLUSION</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOLLSTÄNDIGE OKKLUSION</td>
<td>✓</td>
<td>SCHLIEẞ-DRUCK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICHTUNG</td>
<td>✓</td>
<td>✓*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GESCHWINDIGKEIT</td>
<td>✓</td>
<td>✓*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANGE</td>
<td>✓</td>
<td>✓*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSTER</td>
<td>✓</td>
<td>✓*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOLUS / TRANSPORT</td>
<td>✓</td>
<td>✓*</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>GAS</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSPORT/ RICHTUNG</td>
<td>✓</td>
<td>✓*</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>FRONT-GESCHWINDIGKEIT</td>
<td>✓</td>
<td>✓*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GESCHWINDIGKEIT BOLUSENDE</td>
<td>✓</td>
<td>✓*</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>GEOMETRIE</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESTMASSE</td>
<td>✓</td>
<td>✓*</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>VERTEILUNG IM ORGAN</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTELEERUNG</td>
<td>VOLUMEN</td>
<td>CHEMISCH</td>
<td>VOLUMEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAND-COMPLIANCE</td>
<td>RELATIV</td>
<td>RELATIV</td>
<td>RELATIV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISUALISIERUNG</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>BOLUS TRANSPORT</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INVASIVITÄT</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIEDRIG</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

* nur bei vollständiger Okklusion
* nur bei pH < 4
2.12.2 Anwendung des Impedanzverfahrens in der Pädiatrie

T. Wenzl, G. Heimann1; Ch. Peter, Ch. Poets2; J. Silny

In der jüngsten publizierten Studie1 mit 12 Säuglingen haben sich bei einer Überwachungsphase von 6 h pro Kind 364 GÖR und 165 Apnoen ereignet. Davon sind 22\% saure Reflux, in ca. 30\% der sauren und nichtsauren GÖR zeigt sich eine enge zeitliche Korrelation mit Apnoen.

In der Kinderheilkunde2 wurden mit unserer Unterstützung mittels des Impedanzverfahrens Untersuchungen zum gastroösophagealen Reflux und zur Apnoe von Neugeborenen durchgeführt. Dabei konnte keim zeitlicher Zusammenhang zwischen GÖR und Apnoe belegt werden.

Eine jüngere Studie dieser Gruppe2 beschäftigt sich mit dem Einfluss eines nasal eingeführten Nahrungsvor- oder Ernährungskatheters auf die Häufigkeit der gastroösophagealen Reflux. Die Ergebnisse zeigen eindeutig, dass die Einführung des Katheters durch den unteren Sphinkter bis in den Magen die Wahr-

1Kinderklinik des Universitätsklinikums der RWTH Aachen
2Klinik für Kinderheilkunde-Neonatologie und pädiatrische Pulmonologie der Universität Hannover
scheinlichkeit eines Refluxes bei Säuglingen um 70 % im Vergleich zur ösophagealen Positionierung des Katheters oberhalb des unteren Sphinkters erhöht.
2.12.3 Motilität bei Erwachsenen

R. Winograd, S. Matern3; D. Sifrim, K. Janssens4; B. Weusten, L. Akkermans5; J. Silny

Das Ziel ist es, eine ausreichende Datenmenge in homogenen Patientengruppen zu erhalten, damit nicht nur die wichtigsten diagnostischen Merkmale der jeweiligen Erkrankung, sondern auch ihre Variation und Abgrenzung gegenüber der normalen Motilität ermittelt werden können.

3Medizinische Klinik III des Universitätsklinikums der RWTH Aachen
4Department of Gastroenterology/Faculty of Medicine, University of Leuven, B
5Gastrointestinal Research Unit, University Medical Center Utrecht, NL
2.12.4 Prä- und postoperative sowie intensivmedizinische Aspekte

B. Dreuw, N. Ponschek, V. Schumpelick⁶; J. Schnoor, R. Rossaint⁷; J. Silny

Die Klinik für Anästhesiologie⁷ untersucht mittels der Impedanztechnik den Einfluss der häufig verwendeten Sedativa und Analgetika auf gastroduodenale Motilität. Im Berichtsjahr wurden initiale Untersuchungen an Schweinen durchgeführt, bei denen zunächst die Basalwerte für die nüchtern-, postprandialen und interdigestiven Phasen an wachen und analgosedierten Tieren ermittelt wurden.

⁶Chirurgische Klinik des Universitätsklinikums der RWTH Aachen
⁷Klinik für Anästhesiologie des Universitätsklinikums der RWTH Aachen
Kapitel 3

Präsentationen

3.1 Erschienene Publikationen

79

3.2 Eingereichte / akzeptierte Publikationen

2. Lindenblatt G, Silny J: Electrical phosphenes: On the influence of conductivity inhomogeneities and small-scale structures of the orbita on the current density threshold of excitation. Medical & Biological Engineering & Computing; eingereicht

11. Silny J: Nichtionisierende elektromagnetische Felder und Strahlen. In: Dott, Merk, Neuser, Osieka (Hg.) Lehrbuch der Umweltmedizin, C 5.2.2. Wissenschaftliche Verlagsgesellschaft, Stuttgart; im Druck

3.3 Konferenz-Beiträge

Annual Meeting of the Bioelectromagnetics Society, St. Paul, Minnesota (USA), June 10-14, 2001, P. 90

3.4 Vorträge

1. Aspacher KG, Dommerque R, Silny J: Assessment of induced electric field and current distribution during magnetic stimulation of peripheral nerves and muscles in the upper limbs. Posterpräsentation. 23rd Annual Meeting of the Bioelectromagnetics Society, St. Paul, Minnesota (USA), June 10-14, 2001 (Student Award)

3.5 Sonstige Aktivitäten

5. Silny J: Mitglied der Kommission zur Förderung der wissenschaftlichen Forschung auf dem Gebiet der nichtionisierenden Strahlen beim Bundesamt für Strahlenschutz (BfS), Bonn, seit 1997

6. Silny J: Vorlesungen:

 • Biomedizinische Technik I und II (je V2, WS/SS) (gemeinsam mit Rau, G.) (für Informatiker mit Nebenfach Medizin, seit 1980)

7. Silny J: Gutachtertätigkeit für folgende Fachzeitschriften:
• Bioelectromagnetics (USA)
• Biomedical Engineering (GB)
• Gastrointestinal Motility (GB)
• Neurogastroenterology and Motility (GB)
• Medizinische Physik (D)
• Umweltmedizin in Forschung und Praxis (D)

8. Silny J: Gutachtertätigkeit für

• Deutsche Forschungsgemeinschaft (DFG)
• Deutsche Stiftung Umwelt

• AK 764.0.3 Gefährdung von Personen durch elektromagnetische Felder
• UK 764.1 Elektrische und magnetische Felder im Frequenzbereich von 0 – 10 kHz
Kapitel 4

Anhang

4.1 Mitarbeiter des *femu*

<table>
<thead>
<tr>
<th>Name</th>
<th>Titel/Grad</th>
<th>Arbeitsgebiet/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silny, J.</td>
<td>Prof. Dr.-Ing. habil. med.</td>
<td>Leiter</td>
</tr>
<tr>
<td>Kober, R.</td>
<td></td>
<td>Sekretariat</td>
</tr>
<tr>
<td>Aspacher, K.-G.</td>
<td>Dipl.-Ing.</td>
<td>Wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Bartsch, H.</td>
<td>Dr.</td>
<td>Wiss. Mitarbeiterin – extern</td>
</tr>
<tr>
<td>Bartsch, Ch.</td>
<td>PD Dr.</td>
<td>Wiss. Mitarbeiter – extern</td>
</tr>
<tr>
<td>Benien, Ch.</td>
<td></td>
<td>Stud. Hilfskraft</td>
</tr>
<tr>
<td>Dobel, M.</td>
<td></td>
<td>Stud. Hilfskraft</td>
</tr>
<tr>
<td>Faust, G.</td>
<td></td>
<td>Techniker</td>
</tr>
<tr>
<td>Frindt, Ch.</td>
<td></td>
<td>Auszubildender</td>
</tr>
<tr>
<td>Gierke, G.</td>
<td></td>
<td>Auszubildender</td>
</tr>
<tr>
<td>Groten, Th.</td>
<td></td>
<td>Auszubildender</td>
</tr>
<tr>
<td>Gulbransen, M.</td>
<td></td>
<td>Stud. Hilfskraft</td>
</tr>
<tr>
<td>Göttgens, Th.</td>
<td></td>
<td>Stud. Hilfskraft</td>
</tr>
<tr>
<td>Holtkamp-Roetzler, E.</td>
<td>Dr.</td>
<td>Wiss. Mitarbeiterin – extern</td>
</tr>
<tr>
<td>Klubertz, F.</td>
<td>M.A.</td>
<td>Wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Kühn, R.</td>
<td></td>
<td>E-Techniker</td>
</tr>
<tr>
<td>Laven, G.</td>
<td></td>
<td>Biologie-Laborant</td>
</tr>
<tr>
<td>Lindenblatt, G.</td>
<td>Dipl.-Phys.</td>
<td>Wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Marquardt, Th.</td>
<td></td>
<td>Stud. Hilfskraft</td>
</tr>
<tr>
<td>Name</td>
<td>Profession</td>
<td>Title</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Reimertz, P.</td>
<td>Dipl.-Biol.</td>
<td>Wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Rütgers, O.</td>
<td></td>
<td>E-Techniker</td>
</tr>
<tr>
<td>Schmidt, S.</td>
<td>Dipl.-Biol.</td>
<td>Wiss. Mitarbeiterin</td>
</tr>
<tr>
<td>Scholten, A.</td>
<td>Dipl.-Ing.</td>
<td>Wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Siegmar, H.</td>
<td>Dipl.-Ing.</td>
<td>Wiss. Hilfskraft</td>
</tr>
<tr>
<td>Thalau, P.</td>
<td>Dr.</td>
<td>Wiss. Mitarbeiter – extern</td>
</tr>
<tr>
<td>Vassileva, M.</td>
<td></td>
<td>Stud. Hilfskraft</td>
</tr>
<tr>
<td>Wermeester, G.</td>
<td></td>
<td>E-Techniker/Ausbilder</td>
</tr>
<tr>
<td>Wienert, R.</td>
<td>Dipl.-Ing.</td>
<td>Wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Zillekens, A.</td>
<td></td>
<td>E-Techniker</td>
</tr>
</tbody>
</table>
4.2 Impressum

femu-Forschungsbericht

ISSN 1439-4812 (Print); **ISSN 1439-9261** (Internet)

aus dem Forschungszentrum

für Elektro-Magnetische Umweltverträglichkeit (*femu*)

Universitätsklinikum der Rheinisch-Westfälischen

Technischen Hochschule Aachen (RWTH)

3. Jahrgang 2001

Herausgeber: Prof. Dr.-Ing. habil. med. J. Silny
Erscheinungsweise: 1× jährlich zum Jahresende

Online-Ausgabe zum Download aus dem Internet im pdf-Format

Verlagsort: Aachen, Deutschland

Anschrift:

femu – RWTH Aachen

Pauwelsstraße 20

52074 Aachen

E-Mail: redaktion@femu.rwth-aachen.de

Internet: http://www.femu.rwth-aachen.de

Telefon: ++49 (0) 241/80-87287

Telefax: ++49 (0) 241/80-82636