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1. Material and Methods 
 
1.1 qPCR data 
To test the algorithm, a freely available, comprehensive fluorescence data set [1] of 
64 different genes was selected. This set was already used in a large comparative 
study on the performance for real-time PCR analysis [2]. The fluorescence data of 
each gene includes three replicates of a dilution series in which the primer pairs were 
incorporated into PCR with an external standard in dilutions of 150,000, 15,000, 
1,500, 150, and 15 copies, respectively. 
 
1.1.1 Excluded data 
The data set "AluSq" contains fluorescence data in which competing competimer 
were added in addition to the specific primers. Since the induced changes in the PCR 
kinetics can not be compensated by our model, the data set was excluded from our 
analysis. 
 
1.2 Analysis algorithms 
The data of the dilution series were first converted into a readable format (i.e., CSV 
files) for the MAKERGAUL software (see Supplementary Material 4). Thereafter, the 
fluorescence values were processed with the MAKERGAUL algorithm. Subsequently, 
the Factorinhibition was formed from the determined average values using the 
OpenOffice.org Calc-datasheet "factor_inhibition.ods". These were then taken to 
conduct a reanalysis with the MAKERGAUL_C algorithm. The only different between 
both algorithms (i.e., MAKERGAUL and MAKERGAUL_C) is that MAKERGAUL_C 
uses a fixed value for Factorinhibition that is not calculated with a Downhill-Simplex-
method. For re-examination of each dilution series, the mean was used as described 
above for Factorinhibition in MAKERGAUL_C. 
 
1.3 Evaluation 
The DNA values calculated by both methods were copied into the enclosed Excel 
sheet "analysis_dilution_series.xls" given in [1]. To ensure comparability between the 
different algorithms, the calculation of all technical parameters were essentially done 
as outlined in [2]. 
The following parameters were compared with for algorithms: 
 
1.3.1 Bias 
The highest measured DNA value was set to 1, all descending values were 
normalized to this value. The distance between the highest and lowest value should 
ideally be 10,000, all deviations display a positive or negative bias. 
 
1.3.1.1 Absolute bias 
For comparing the bias of our algorithms with the methods presented in [2] by using 
the Friedman-test, we had to transform the values for bias into an unidirectional 



sortable parameter. Therefore we build an absolute bias as the absolute value of the 
difference between 10,000 and the value for bias. 
This means the ideal value is 0, any higher represents an absolute bias. 
 
 
1.3.2 Precision (also called reproducibility) 
All DNA data were log transformed. Then the average variance between the 
triplicates of each dilution series was determined. This value provides information on 
the reproducibility of a measured value in repetitions. A small value indicates a high 
precision. 
 
1.3.3 Linearity 
This parameter describes the deviation of the logarithmic mean values of the 
triplicates of each dilution from the regression line of the expected values. As for the 
precision, a value of 0 represents the ideal state for this parameter. 
 
1.3.4 Resolution 
The resolution is defined as the n-fold change of a measured value that will be 
detected by the method in a 5% confidence interval. 
 
1.3.5 Changed variance 
The variance of the values for the log transformed triplicates obtained for each 
algorithm were compared with the enclosed values that were determined by Cq 
method that represents the gold standard [3]. A value of 1 means unchanged 
variance. Values less than 1 represent an improvement, while values larger than 1 
represent a deterioration to the reference analysis. 
 
 
1.3.6 Friedman-test 
For finding a significant difference between the performance parameters of the tested 
algorithms (See the main Article), we used the Friedman-test. It is a non-parametric 
test for independent groups of dependent samples without the need of normal 
distribution [4].  To test the data we used the unpaired groups (the different genes) as 
columns, the paired samples (the results by different analysis algorithms) as rows of 
a single table for the every examined performance-parameter (absolute bias, 
precision, linearity, changed variance and resolution). If there was a difference 
between rows (methods), the null hypothesis (no difference between methods) was 
rejected and multiple comparisons between rows where applied to determine the 
methods (or groups of methods) which differed from the other. 
The described analysis was performed by a program named ‘Friedman test: non-
parametric 2-way ANOVA’ [5], basing on the methods described in [6]. The resulting 
prepared values and the resulting data can be found in supplemental material 4. 
 
2. Results and illustrations 
 
The core results and the discussion about their implications can be found in the main 
article. Here we present four additional diagrams which illustrate the technical 
parameters of the compared methods, their range and differences for the 63 
enclosed dilution series. 
 
 
 



Diagrams 1-4: Comparison of absolute bias, precision, linearity and resolution 
between MAKERGAUL, MAKERGAUL_C, 5PSM [8], Cy0 [9], CAmpER: DART [10], 
CAmpER: FPLM [11], FPK-PCR [12], LinRegPCR [13], LRE-qPCR [14] with Emax 
and with E100 [2], MAK2 [15], and PCR-Miner [16]. The data is presented as box-
and-whiskers-plot. Whiskers are representing maximum and minimum value, the box 
includes the values between upper and lower quartile. The band inside shows the 
median value. The methods are sorted by the mean ranking from best to worst as it 
was computed with [5]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 



 

 
 



 

 
 



 

 
The graphs in these diagrams were generated using the Gnumeric Spreadsheet [17]. 
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