Diagnosis and Treatment of Nasopharyngeal Carcinoma in Children and Adolescents – Recommendations of the GPOH-NPC Study Group

Diagnose und Behandlung des Nasopharynxkarzinoms bei Kindern und Jugendlichen – Empfehlungen der GPOH-NPC Studiengruppe

Authors

Affiliations
Affiliation addresses are listed at the end of the article

Key words
- nasopharyngeal cancer
- children
- adolescents
- therapy
- interferon
- chemotherapy

Schlüsselwörter
- Nasopharynxkarzinom
- Kinder
- Jugendliche
- Therapie
- Interferon
- Chemotherapie

Abstract

Nasopharyngeal carcinoma (NPC) is a rare malignant tumor arising from epithelial cells of the nasopharynx. Its incidence is highest in Southeast Asia. Age distribution of NPC is bimodal, with one peak in young adolescents and another in patients 55–59 years of age. EBV appears to be the primary etiologic agent in the pathogenesis, environmental factors such as nitrosamines and genetic factors are contributory. NPC is most commonly diagnosed in locally advanced stages, with lymph node metastases occurring in up to 90% of patients. About 5–10% of patients present with distant metastases. Diagnosis of NPC is made histologically, supported by an abnormal anti-EBV-VCA IgA titer and elevated plasma EBV-DNA load. Superior results in children and adolescents with advanced locoregional NPC, with overall and event-free survival rates >90%, have been achieved by neoadjuvant chemotherapy with 5-fluorouracil and cisplatin, followed by synchronous radiochemotherapy and subsequent maintenance therapy with interferon-α as demonstrated by the 2 prospective studies GPOH-NPC-91 and -2003. Response to therapy can be assessed by PET-imaging and in patients with complete remission after neoadjuvant chemotherapy, the radiation dose to the primary tumor can be safely reduced from 59.4 to 54.4 Gy. Since the majority of long term sequelae such as xerostomia, skin and tissue fibrosis are caused by high radiation dosages, radiotherapy modalities such as intensity-modulated radiotherapy should be used to efficiently spare non-tumorous tissue. For patients with metastatic disease and relapse, survival chances are low. New treatment strategies, such as the application of EBV-specific T-lymphocytes should be considered for these patients.

Zusammenfassung

Bibliography
DOI http://dx.doi.org/10.1055/s-0041-111180
Klin Padiatr 2016; 228: 105–112
© Georg Thieme Verlag KG Stuttgart · New York
ISSN 0300-8630

Correspondence
Prof. Udo Kontny
Division of Pediatric Hematology
Oncology and Stem Cell Transplantation
Medical Faculty
RWTH Aachen University
Pauwelsstraße 30
52074 Aachen
Germany
Tel.: +49/241/8088 892
Fax: +49/241/8082 481
ukontny@ukaachen.de
Diagnostic and Treatment Recommendation

Kontny U et al. Diagnosis and Treatment of ... Klin Padiatr 2016; 228: 105–112

Pathogenesis

NPC presents as a complex disease caused by an interaction of the oncogenic gamma-herpes virus EBV, environmental, and genetic factors, in a multistep carcinogenic process [25]. A monoclonal EBV infection is found in more than 98% of pre-invasive lesions [37]. The EBV-infected epithelial cells express a restricted group of latent genes (type II latency) such as EBNA1, LMP1, LMP2A and EBERs [52]. In vitro and in vivo models have shown that especially LMPs play a major role in malignant transformation of infected nasopharyngeal epithelial cells. More recently, evidence that the EBV BART microRNAs contribute to the malignant transformation has accumulated [24]. An aberrant immune response to EBV with high titers of IgA against viral capsid antigen and early antigen is seen early in disease and has been used together with circulating plasma EBV-DNA for screening in high-risk areas [26,57,58]. EBV strains found in NPC induce an unusually strong virus replication in infected cells that could explain this immune response [51]. Furthermore, these strains infect epithelial cells much more efficiently than strains found elsewhere, suggesting that NPC is caused by particular EBV strains [51]. Next-generation sequencing of NPC tumors revealed a distinct mutational signature with alterations in pathways responsible for chromatin modification, autophagy and ERBB-PI3K signaling [23].

Clinical Presentation

Young patients with nasopharyngeal carcinoma frequently present with symptoms resulting from mass effect. Nasal symptoms, such as epistaxis and nasal obstruction are almost always present, and are secondary to the presence of the tumor in the nasopharynx. Secondly, auditory symptoms such as hearing loss and tinnitus occur, which are related to dysfunction of the Eustachian tube caused by latero-posterior extension of the tumor into the parapharyngeal space. Thirdly, cranial nerve palsies are present, commonly affecting the fifth and sixth cranial nerves and resulting from upward extension of the tumor leading to skull base erosion; patients also might experience headache, diplopia, facial pain and numbness. A retrospective analysis of 4768 patients identified the following symptoms at presentation: neck mass (75.8%), nasal (73.4%), aural (62.4%), headache (34.8%), diplopia (10.7%), facial numbness (7.6%), weight loss (6.9%), and trismus (3.0%). The physical signs present at diagnosis were enlarged neck node (74.5%) and cranial nerve palsy (20.0%) [44]. Since nasal and auditory symptoms are nonspecific and a thorough examination of the nasopharynx is not easy to perform, the majority of NPC patients are only diagnosed when the tumor has reached a locally advanced stage. Indeed, up to 90% of patients present with lymph node metastases. In about 5–11% of patients distant metastases are detected at diagnosis involving bones (67%), lungs (20%), liver (30%), bone marrow (23%) and mediastinum [2,3].

Diagnosis

Histological analysis of a biopsy specimen is mandatory for the diagnosis of NPC. Prior to biopsy, mirror examination of the nasopharyngeal space for direct visualization of the tumor and MRI of the nasopharynx, skull base and neck including all cervical and supraclavicular lymph node regions are recommended (▶ Table 1). MRI is preferred over CT, since it more precisely describes deep primary tumor infiltration (▶ Fig. 1) [22]. Nasopharyngeal carcinomas are categorized along the WHO classification modified by Krüger and Wustrow [19] (▶ Table 2). The classification indicates the degrees of lymphoid infiltration, whereby undifferentiated NPC with lymphoid infiltration corresponds to the lymphoepithelioma described by Schmincke in 1921 and non-keratinizing carcinoma with lymphoid stroma to the tumor characterized by Regaud in the same year [16,38]. In children and adolescents most tumors are of type III histology,
Staging ▼

Staging should include PET/(CT), chest-CT and MRI-abdomen for detection of distant metastases (Fig. 2). In case of lesions suspicious of bone involvement on PET or MRI, a technetium bone scan is recommended. Also, EBV-serology, including anti-VCA-IgA and EBV-PCR are recommended. Tumor stages are defined by the classification of the International Union against Cancer (UICC) and the American Joint Committee of Cancer (AJCC) [32] (Table 3,4). MRI, PET/(CT), anti-EBV-VCA-IgA and EBV-PCR are useful parameters for monitoring response to therapy and are recommended to be repeated after neoadjuvant chemotherapy, after radiotherapy and after maintenance therapy with interferon-ß. In the NPC-2003 study all tumors were PET-positive at initial diagnosis or at relapse [6]. Changes in 18F-FDG uptake during therapy have been shown to be of prognostic value [54]. As shown in the NPC-2003 study the dose of radiotherapy to the tumor could be safely reduced from 59.4 to 54.4 Gy in patients who are in complete remission by MRI and PET after neoadjuvant chemotherapy.

Table 2 WHO classification of nasopharyngeal carcinoma modified by Krüger and Wustrow [19].

<table>
<thead>
<tr>
<th>Typ</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Squamous cell carcinoma</td>
</tr>
<tr>
<td>IIa</td>
<td>Non-keratinizing carcinoma without lymphoid stroma</td>
</tr>
<tr>
<td>IIb</td>
<td>Non-keratinizing carcinoma with lymphoid stroma</td>
</tr>
<tr>
<td>IIIa</td>
<td>Undifferentiated carcinoma without lymphoid stroma</td>
</tr>
<tr>
<td>IIIb</td>
<td>Undifferentiated carcinoma with lymphoid stroma</td>
</tr>
</tbody>
</table>

Table 3 TNM-classification of nasopharyngeal carcinoma according to the International Union against Cancer (UICC) and American Joint Committee of Cancer (AJCC) system [32].

<table>
<thead>
<tr>
<th>Primary tumor (T)</th>
<th>TX</th>
<th>T0</th>
<th>Tis</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Primary tumor cannot be assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tis</td>
<td>Carcinoma in situ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>Tumor confined to the nasopharynx, or tumor extends to oropharynx and/or nasal cavity without parapharyngeal extension (eg, without postero-lateral infiltration of tumor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>Tumor with parapharyngeal extension (postero-lateral infiltration of tumor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>Tumor involves bony structures of skull base and/or paranasal sinuses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>Tumor with intracranial extension and/or involvement of cranial nerves, hypopharynx, orbit, or with extension to the infratemporal fossa/masticator space</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regional lymph nodes (N)</th>
<th>NX</th>
<th>N0</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
<th>N3a</th>
<th>N3b</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Regional nodes cannot be assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>Unilateral metastasis in cervical lymph nodes ≤ 6 cm in greatest dimension, above the suprACLavicular fossa, and/or unilateral or bilateral retropharyngeal lymph nodes ≤ 6 cm in greatest dimension (midline nodes are considered ipsilateral nodes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>Bilateral metastasis in cervical lymph nodes ≤ 6 cm in greatest dimension, above the suprACLavicular fossa (midline nodes are considered ipsilateral nodes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>Metastasis in a lymph node > 6 cm and/or to the suprACLavicular fossa (midline nodes are considered ipsilateral nodes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3a</td>
<td>> 6 cm in dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3b</td>
<td>Extension to the suprACLavicular fossa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distant metastasis (M)</th>
<th>M0</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>No distant metastasis</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>Distant metastasis</td>
<td></td>
</tr>
</tbody>
</table>

the remaining ones type II [3]. Both type II and III tumors are EBV-associated, whereas type I is not [5].

Table 4 Stages of nasopharyngeal carcinoma according to the International Union against Cancer (UICC) and American Joint Committee of Cancer (AJCC) system [32].

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>T1</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>T1</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>IVA</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IVB</td>
<td>T Any</td>
<td>N3</td>
<td>M0</td>
</tr>
<tr>
<td>IVC</td>
<td>T Any</td>
<td>N Any</td>
<td>M1</td>
</tr>
</tbody>
</table>

Fig. 2 13-year-old girl with nasopharyngeal carcinoma and right cervical lymph node metastasis at diagnosis. 3D reconstruction (left) and images of all 3 directions (right). 18FDG uptake by the lymph node metastasis is higher than by the primary tumor.
or both is being investigated in several phase III clinical trials in adults.

In children and adolescents with NPC, sensitivity to chemotherapy has been shown as early as in the mid-70s [12]. There have been several retrospective studies on children and adolescents with NPC, most of them with less than 50 patients, mostly heterogeneous for the type of chemotherapy used and the dosage of radiotherapy applied, reporting a 5-year overall and disease-free survival of 41–91% and 47–85%, respectively [1, 13, 34, 35, 43, 48, 55, 59]. NPC in children and adolescents has so far been prospectively studied only in 5 clinical trials [6, 7, 12, 29, 40]. Due to the low incidence of the disease in children and adolescents, none of these studies included a randomized question to be answered. The first prospective study was a single institutional study conducted at Emory University Medical Center in Atlanta, USA, treating 12 patients aged 6–20 years during years 1976–1995 [12]. 11 patients had locally advanced tumors; one had systemic metastases at diagnosis. Chemotherapy contained doxorubicin, cyclophosphamide and 5-fluorouracil and was given before radiotherapy in 4 patients and with or after radiation in 8 patients in 3 week cycles for up to 2 years. Radiation dosages to the primary tumor site were between 59 and 68 Gy and to the neck between 59 and 66 Gy. 9 patients remained tumor free with a median follow up of 9 years; one patient developed a secondary osteosarcoma of the mandible, one patient died of tuberculosis and one patient was lost to follow up in remission.

In the Pediatric Oncology Group Study 9486 17 patients below 22 years with nasopharyngeal cancer were evaluable for analysis [40]. One patient with stage II disease was only irradiated, 16 patients with stage III/IV NPC received 4 cycles of neoadjuvant chemotherapy with methotrexate, cisplatin and 5-fluorouracil. Irradiation was given after the end of chemotherapy with a dose of 61.2 Gy to the primary tumor and positive lymph nodes whereas 50.4 Gy were applied to non-involved lymph nodes of the upper neck and 45.0 Gy to non-involved ones of the lower neck. The 4-year EFS and OS rates were 77 and 75%, respectively. The NPC study of the Italian rare tumors in pediatric age project (TREP) treated 46 patients aged 9–17 years during the years 2000 to 2009 [7]. Of these all but one patient had lymph node involvement and 5 had distant metastases. Patients received 3 cycles of neoadjuvant chemotherapy with cisplatin and 5-fluorouracil followed by radiotherapy. Irradiation dosages were 65 Gy for the primary tumor and involved lymph nodes and 45 Gy for non-involved ones. The 4-year PFS and OS rates were 79.3 and 80.9%, respectively.

The NPC-91-GPOH study was the first multicenter study for the treatment of nasopharyngeal carcinoma in children, adolescents and young adults [29]. 68 patients were registered, among them 5 patients with metastatic disease. Of the 59 protocol-patients (58 “high risk” patients and one “low risk” patient, median age 13 years, range 8–25) the high risk patients were treated with induction chemotherapy consisting of 3 cycles of methotrexate, cisplatin and 5-fluorouracil, radiotherapy with a dosage of 59 Gy to the primary tumor and 45 Gy to loco regional lymph nodes and maintenance therapy with interferon-ß for 6 months. The estimated overall survival for the protocol patients after 9 years was 95% and the disease-free survival 91%. Therapy was complicated by severe mucositis requiring total parenteral nutrition in 46% of patients and dose reductions in subsequent cycles of chemotherapy in 30% of patients. Therefore, methotrexate was omitted in the NPC-2003 study [6]. In addition, due to results on the benefit of concomitant radiochemotherapy in adults [21] cisplatin was given for 2 weeks during radiotherapy. A third change to the NPC-91 study in 2003 was the reduction of the radiation dose to 54 Gy in patients with complete tumor remission after induction chemotherapy. The study resulted in an overall survival of 97% after a median-follow up of 30 months and an event-free survival of 92%. Follow up after 52 months showed an overall survival of 93% and an event-free survival of 92% (unpublished) (Fig. 3).

The NPC-91 and NPC-2003 studies are unique for the following 4 reasons: (1) both together encompass the largest number of children and adolescents with NPC treated in a prospective study. (2) The NPC-93 and NPC-2001 trials are the only trials for NPC which use interferon-ß as maintenance therapy. The latter fact was mainly due to the unavailability of this drug in other countries than Germany. (3) Overall and event-free survival in the 2 studies are higher compared to the ones reported by other prospective trials on NPC. Since in the Italian study, 5 of the 46 patients had metastases at diagnosis, outcome for their patients with loco regional disease appears to be similar. (4) Compared to the other prospective trials, the dosage of radiation to the primary tumor is lowest in the NPC-2003 trial.

Based on the last 2 arguments we recommend treating children and adolescents with nasopharyngeal cancer along the concept of the NPC-91 and 2003-studies. The suggested treatment is outlined in the following paragraphs.

Treatment for patients with localized disease

Patients with Stage I disease

Patients rarely present with small, localized tumors without evidence of metastases (T1N0M0). High cure rates can be achieved without chemotherapy (20). We therefore recommend treating these patients as in the NPC-93 study with radiotherapy followed by IFN-ß maintenance therapy (Fig. 4).

Patients with Stage II, III and IV disease

Stage II disease is also very rare in children and adolescents, with only 2 patients registered in the 2 NPC-GPOH studies. These 2 patients have been successfully treated with only radiotherapy and radiochemotherapy, respectively. However, since a large retrospective study from Hongkong, encompassing 141 pa-

![Fig. 3](image-url)
patients with NPC stage I and II showed that patients with stage II T2N0 and T1,2N1 had a 10y-OS and -DFS of only 72 and 55%, respectively, when treated with radiotherapy alone [20], we recommend to treat the rare patient with stage II disease as the ones with stage III and IV disease which consists of 3 cycles of neoadjuvant chemotherapy with cisplatin and 5-fluorouracil, followed by concomitant radiochemotherapy, and maintenance with interferon-β for 6 months (Fig. 4).

Chemotherapy
Neoadjuvant chemotherapy is given in 3 cycles at 3-week intervals. Each cycle contains cisplatin 100 mg/m² as infusion over 6 h on day 1. Immediately after the end of the cisplatin infusion, leucovorin 25 mg/m² is given as an intravenous bolus every 6 h for 6 doses. 30 min after the first leucovorin bolus, 5-fluorouracil (5-FU) 1000 mg/m²/d is started as continuous infusion over 5 days. Adequate hydration before, with and after cisplatin is most important for preventing nephrotoxicity. In addition, mannitol should be given according to the German product information (“Fachinformation”) immediately before cisplatin and during pre- or post-hydration in case of insufficient urinary output. The role of mannitol in protecting against cisplatin-induced nephrotoxicity, however, has been questioned over the last years. In our experience, 49 women with ovarian cancer, who received 75 mg/m² cisplatin every 3 weeks, were randomized to 3 hydration arms, each one containing 2L of normal saline, one in addition furosemide, the other in addition mannitol; when comparing creatinine clearances on day 6, the ones in the normal saline + mannitol (50g) group were significantly lower than the ones in the other 2 groups [42].

Interferon-β
After completion of chemotherapy and radiochemotherapy, all patients in the NPC-91 and NPC 2003-GPOH studies underwent 6 months of treatment with interferon-β. Though there have not been any randomised studies examining the role of interferon-β in patients with NPC, there are clear hints that interferon-β is effective in the treatment of NPC as a) interferon-β alone led to a complete response in a patient with metastatic NPC [50] b) EFS and OS of the NPC-91 and -2003 studies, which are the only ones applying interferon-β prospectively, are higher than the ones in other trials or equal with lower radiation dosages applied than in the Italian study, and c) adult patients treated with interferon-β had a better outcome than patients treated without it in a retrospective analysis [53]. Up to 2010, patients received Fiblaferon®, natural interferon beta, licensed for the treatment of NPC in Germany. In 2010 the production of Fiblaferon® was stopped for non-medical reasons. Since then, the use of recombinant interferon-β, Rebif®, licensed for the treatment of multiple sclerosis but not NPC, was recommended by the NPC study committee. Rebif® has been used before in the Netherlands where Fiblaferon® was not licensed. Since there are no data showing that the outcome of patients treated with Rebif® is inferior to the one of patients treated with Fiblaferon®, it is recommended to use Rebif® at a dose of 6 million IU 3 times a week subcutaneously. A lower dose of 2.4 million IU 3 times a week should be applied in the first week of treatment (Fig. 4).

Treatment for metastatic disease
Metastatic disease at diagnosis is rare in patients with NPC. Between 2003 and 2010, only 3 patients with metastatic NPC have been registered at the GPOH-NPC-study center [6]. In general,
prognosis for patients with metastatic disease is poor, with 5-year survival rates of ≤ 20% [7]. Since metastatic disease is usually responsive to chemotherapy at the beginning of therapy, initial treatment usually consists of chemotherapy followed by radiotherapy to the tumor, loco-regional lymph nodes and distant metastatic sites, if feasible. EBV-specific cytotoxic T-cells (CTLs) have been shown to be safe and have anti-tumor-activity in refractory and recurrent NPC [27]. Recently, the application of EBV-specific CTLs to patients with metastatic NPC resulted in an increased survival compared to patients not receiving such cells [45]. Therefore, it is recommended to check for the frequency of EBV-specific T-cells at diagnosis. Patients should then receive 3 cycles of neoadjuvant chemotherapy as described for non-metastatic disease. After the third cycle of chemotherapy in patients with EBV-specific T-lymphocytes, isolation of these by lymphapheresis is suggested. In patients responding well to chemotherapy, a fourth cycle is recommended followed by radiochemotherapy. EBV-specific T-lymphocytes should be re-infused during radiotherapy. Maintenance therapy with interferon-β is recommended as for patients with non-metastatic disease.

Treatment of relapse
In the NPC-91 and 2003-studies, 8 patients with NPC relapsed [6,27]. Of these, 2 had only a local relapse; 6 had metastatic +/- local relapse. Most of the patients responded to chemotherapy again, but overall survival was poor. Major challenges to the treatment of relapse in NPC are the recurrence of disease at previously irradiated sites and maintenance of continuous remission after renewed chemotherapy. Therefore, strategies for treating patients with relapse should encompass the application of new methods of radiotherapy, e.g. proton-irradiation for local recurrences and new treatment modalities such as the application of EBV-specific T-cells for systemic recurrences or experimental allogeneic stem cell transplantation [11,15,49].

Follow-up and late effects
After the end of treatment patients should be followed-up at regular intervals and observed for recurrences and late complications of therapy. MRI and EBV-serology/DNA are the main diagnostic modalities for the detection of relapse. Late complications include mainly xerostomia, hypothyroidism, ototoxicity, and skin and tissue fibrosis. An increased risk for osteoradionecrosis of the skull base, temporal lobe necrosis, delayed bulbar palsy, hypopituitarism, and secondary cancers has also been described but seems to be linked to higher radiation doses [6,46,56]. In the NPC-GPOH-2003 study, hypothyroidism was reported in 25% of patients, and ototoxicity in 14% after a median follow-up of 48 months [6]. Radiation necrosis was not an issue with the recommended dose levels. Late effects, however, continue to arise even 10 years and later after therapy, and 15-year cumulative incidences of hypothyroidism and ototoxicity with 47 and 68%, respectively, have been reported in a retrospective review in children with NPC treated with chemotherapy and similar doses of radiotherapy [10].

Nasopharyngeal carcinoma registry and clinical trials
The GPOH registry for nasopharyngeal cancer collects data from several regional centers across Germany. It contains information on epidemiological aspects, course and outcome of patients with nasopharyngeal carcinoma. In addition, the study center focuses on assuring the highest quality of patient care by establishing guidelines for diagnostics, offering reference evaluation for histological specimen and imaging studies, as well as giving recommendations for treatment. Several biological studies will be launched to further investigate on genetic and immunological aspects of the disease. In order to further advance the treatment of patients with NPC, clinical trials are mandatory which will require a joint multidisciplinary and international collaboration.

Conclusion
Nasopharyngeal carcinoma (NPC) is a rare malignant tumor in children and adolescents. About 95% of patients are diagnosed with locally advanced stages. For these patients a therapy concept with neoadjuvant chemotherapy, followed by radiochemotherapy and subsequent maintenance therapy with interferon-β has not only proved to show the highest overall and event-free survival rates (> 90%), but also to use the lowest dosages of radiotherapy. Since long term sequelae such as xerostomia, endocrine defects, tissue fibrosis and secondary neoplasms are mainly due to high-dosages of radiotherapy, future efforts to advance treatment of these patients should include strategies to further decrease radiation intensity. For patients with metastases or relapse new treatment strategies such as the use of EBV-specific T-cells or agents specific for newly identified targets by next-generation sequencing are warranted. New treatment strategies should be evaluated in clinical trials and will require international collaboration.

Contributor’s Statement
FM, GS, Provision of figures. UK, SF and RM writing of manuscript. All authors, development of concept for diagnosis and treatment of NPC.

Conflict of interest: The authors have no conflict of interest to disclose.

Affiliations
1 Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
2 Children’s Hospital München-Schwabing, Technische Universität, München, Germany
3 Prof.-Hess-Kinderklinik, Klinikum Bremen-Mitte, Bremen, Germany
4 Department of Radiotherapy and Radiation Oncology, Hannover Medical School, Hannover, Germany
5 Pathogenesis of Virus Associated Tumors (F100), German Cancer Research Center, Heidelberg, Germany
6 Medical Faculty, Department of Radiation Oncology, RWTH Aachen University, Aachen, Germany
7 Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr. von Hauner’sches Kinderspital, Ludwig-Maximilians-University, München, Germany
8 Department of Radiotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
9 Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands
10 Hannover Medical School, Pediatric Hematology/Oncology, Hannover, Germany
11 Kindertumorexister der GPOH, Sektion Kinderpathologie, Universitätssklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
12 Department of Nuclear Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
13 Medical School Hannover, Institute of Virology, Hannover, Germany
14 Section of Paediatric Radiology, University Medical Center Mainz, Mainz, Germany
15 University Essen, Westgeman Protontherapycenter Essen, Essen, Germany
16 Pediatric Oncology, Otto von Guericke University Childrens Hospital, Magdeburg, Germany
References

5 Brennan B. Nasopharyngeal carcinoma. Orphanet J Rare Dis 2006; 1: 23
6 Buehrlen M, Zwan C, Granzen B et al. Multimodal Treatment, Including Interferon Beta, of Nasopharyngeal Carcinoma in Children and Young Adults. Cancer 2012; 118: 4892–4899
17 Kaatsh P, Spijk C. German Childhood Cancer Registry – Report 2013/14 (1980–2013). Institute of Medical Biostatistics, Epidemiology and Informatics (IMBIE) at the University Medical Center of the Johannes Gutenberg University Mainz 2014
24 Lo AK, Dawson CW, Jin DY et al. The pathological roles of BART miRNAs in nasopharyngeal carcinoma. J Pathol 2012; 227: 392–403
25 Lo KW, To KT, Huang DP. Focus on nasopharyngeal carcinoma. Cancer Cell 2004; 5: 423–428
38 Regaud C, Reverchon L. Sur un cas d’épithéliome épidermoide développe dans le massif maxillaire supérieur, étendu aux cavités de la bouche, aux cavités buccale, nasale et orbitaire. Rev de laryng 1921; 42: 369–378

Kontny U et al. Diagnosis and Treatment of... Klin Padiatr 2016; 228: 105–112
52 Tsao SW, Tsang CM, To KF et al. The role of Epstein-Barr virus in epithelial malignancies. J Pathol 2015; 235: 323–333
58 Zong YS, Sham JS, Ng MH et al. Immunoglobulin A against viral capsid antigen of Epstein-Barr virus and indirect mirror examination of the nasopharynx in the detection of asymptomatic nasopharyngeal carcinoma. Cancer 1992; 69: 3–7